Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T12:33:27.293Z Has data issue: false hasContentIssue false

Relaxation of rotational and internal modes of macromolecules determined by dynamic scattering

Published online by Cambridge University Press:  17 March 2009

J. Michael Schurr
Affiliation:
Department of Chemistry, University of Washington, Seattle, Washington 98195, U.S.A.

Extract

About 11 years ago Ford & Benedek (1964) and Cummins, Knable & Yeh (1964) developed some fascinating new light-scattering techniques for the study of macromolecular motions in solution. Enthusiastic researchers have over the years endowed these new methods with a variety of colourful names, including optical mixing or light-beating spectroscopy, heterodyne or homodyne beating, intensity fluctuation spectroscopy, Rayleigh spectroscopy, and quasielastic or dynamic light scattering.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, F. S. & Van, Holde K. E. (1971). Dichroism of TMV in pulsed electric fields. Biopolymers 10, 865–81.CrossRefGoogle ScholarPubMed
Callis, P. R. & Davidson, N. (1969). Flow dichroism of DNA: a new apparatus and further studies. Biopolymers 7, 335–52.CrossRefGoogle ScholarPubMed
Callis, P. R. & Davidson, N. (1969). Hydrodynamic relaxation times of DNA from decay of flow dichroism measurements. Biopolymers 8, 379–90.CrossRefGoogle Scholar
Cummins, H. Z., Knable, N. & Yeh, Y. (1964). Observations of diffusion broadening of Rayleigh scattered light. Phys. Rev. Lett. 12, 150–3.CrossRefGoogle Scholar
Cummins, H. Z., Carlson, F. D., Herbert, T. J. & Woods, G. (1969). Translational and rotational diffusion constants of tobacco mosaic virus from Rayleigh linewidths. Biophys. J. 9, 518–46.CrossRefGoogle ScholarPubMed
Ding, D.-W., Rill, R. & Van, Holde K. E. (1972). The dichroism of DNA in electric fields. Biopolymers 11, 2109–24.CrossRefGoogle ScholarPubMed
Dubin, S. B., Lunacek, J. H. & Benedek, G. B. (1967). Observation of the spectrum of light scattered by solutions of biological macromolecules. Proc. natn. Acad. Sci. U.S.A. 457, 1164–71.CrossRefGoogle Scholar
Dubin, S. B., Clark, N. A. & Benedek, G. B. (1971). Measurement of the rotational diffusion coefficient of lysozyme by depolarized light scattering: configuration of lysozyme in solution. J. chem. Phys. 54, 5158–64.CrossRefGoogle Scholar
Dubois-Violette, E. & de, Gennes P. G. (1967). Quasi-elastic scattering by dilute, ideal, polymer solutions. II. Effects of hydrodynamic interactions. Physics 3, 181–98.CrossRefGoogle Scholar
de, Gennes P.-G. (1967). Quasi-elastic scattering of neutrons by dilute polymer solutions. I. Free draining limit. Physics 3, 3743.Google Scholar
Einstein, A. (1910). Theorie der Opaleszens von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Annln Phys. 33, 1275–98.CrossRefGoogle Scholar
Ford, N. C. Jr & Benedek, G. B. (1964). Observation of the spectrum of light scattered from a pure fluid near its critical point. Phys. Rev. Lett. 15, 649–53.CrossRefGoogle Scholar
Ford, N. C. Jr, Lee, W. I. & Karasz, F. E. (1969). Laser light scattering by poly-amino acid solutions. J. Chem. Phys. 50, 3098–100.CrossRefGoogle Scholar
Foord, R., Jakeman, E., Oliver, C. J., Blagrove, R. J., Wood, E. & Peacocke, A. R. (1970). Determination of diffusion coefficients of haemocyanin at low concentration by intensity fluctuation spectroscopy of scattered laser light. Nature, Lond. 227, 242–5.CrossRefGoogle ScholarPubMed
Fujime, S. & Ishiwata, S. (1971). Dynamic study of F. actin by quasi-elastic scattering of laser light. J. molec. Biol. 62, 251–65.CrossRefGoogle Scholar
Fujime, S., Maryuma, M. & Asakura, S. (1972 a). Flexural rigidity of bacterial flagella studied by quasielastic scattering of laser light. J. molec. Biol. 68, 347–59.CrossRefGoogle ScholarPubMed
Fujime, S., Maryuma, M. & Asakura, S. (1972 b). Spectral distribution of light quasi-elastically scattered from straight and curved rods. Macromolecules 5, 813–14.CrossRefGoogle Scholar
Graf, G., Marange, C., Munch, J. P. & Candau, S. (Preprint.)Google Scholar
Han, C. C.-C. & Yu, H. (1974). Intramolecular chain dynamics by forward depolarized scattering. J. Chem. Phys. 61, 2650–9.CrossRefGoogle Scholar
Ishawata, S. & Fujime, S. (1972). Effect of calcium ions on the flexibility of reconstituted thin filaments of muscle studied by quasi-elastic scattering of laser light. J. molec. Biol. 68, 511–22.CrossRefGoogle Scholar
Jamieson, A. M. & Presley, C. T. (1973). Anisotropic translational diffusion in dilute aqueous solutions of partially hydrolysed polyacrylamide by quasi-elastic light scattering. Macromolecules 6, 358–60.CrossRefGoogle Scholar
King, T. A., Knox, A. & McAdam, J. D. G. (1973). Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering. Biopolymers 11, 1917–26.CrossRefGoogle Scholar
Lee, W. I. & Schurr, J. M. (1973). Intensity autocorrelation function for a flexible polymer. Chem. Phys. Letts. 23, 603–7.CrossRefGoogle Scholar
Lee, W. I. & Schurr, J. M. (1974). Dynamic light scattering studies of poly-L-lysine HBr in the presence of added salt. Biopolymers 13, 903–8.CrossRefGoogle ScholarPubMed
Lee, W. I., Tom, P., Verdugo, P. & Schurr, I. M. (Unpublished results.)Google Scholar
McAdam, J. G. & King, T. A. (1974). Polymer dynamics in solution from Rayleigh line profile spectroscopy. Chem. Phys. Letts. 6, 109–16.Google Scholar
Nossal, R., Chen, S.-H. & Lai, C.-C. (1971). Use of laser scattering for quantitative determinations of bacterial motility. Opt. Commun. 4, 35–9.CrossRefGoogle Scholar
O'Konski, C. T. & Haltner, A. J. (1956). Characterization of the monomer and dimer of tobacco mosaic virus by transient electric birefringence. J. chem. Soc. 78, 3604–10.CrossRefGoogle Scholar
O'Konski, C. T. & Haltner, A. J. (1957). Electric properties of macromolecules. I. A study of electric polarization in poly-electrolyte solutions by means of electric birefringence. J. Am. chem. Soc. 79, 5634–49.CrossRefGoogle Scholar
Pecora, R. (1964). Doppler shifts in light scattering from pure liquids and polymer solutions. J. chem. Phys. 40, 1604–14.CrossRefGoogle Scholar
Pecora, R. & Steele, W. A. (1965). Scattering from fluids of non-spherical molecules. II. Light. J. chem. Phys. 42, 1872–9.CrossRefGoogle Scholar
Schaeffer, D. W., Benedek, G. B., Schofield, P. & Bradford, E. (1971). Spectrum of light quasi-elastically scattered from tobacco mosaic virus. J. chem. Phys. 55, 3884–95.CrossRefGoogle Scholar
Schmidt, R. L. (1973). Observation of the internal motion in NI-NDA Biopolymers 12, 1427–30.CrossRefGoogle Scholar
Schmitz, K. S. & Pecora, R. (1975). Quasi-elastic light scattering by calf thymus DNA and λDNA. Biopolymers 14, 521–42.CrossRefGoogle Scholar
Schmitz, K. S. & Schurr, J. M. (1973). Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA. Biopolymers 12, 1543–64.CrossRefGoogle ScholarPubMed
Schurr, J. M. & Schmitz, K. S. (1973). Rotational relaxation of macromolecules determined by dynamic light scattering. I. Tobacco mosaic virus. Biopolymers 12, 1021–45.CrossRefGoogle Scholar
Silbey, R. & Deutch, J. M. (1972). Quasi-elastic light scattering from large macromolecules. J. chem. Phys. 57, 5010–11.CrossRefGoogle Scholar
Solc, K. & Stockmayer, W. H. (1971). Shape of a random flight chain. J. chem. Phys. 54, 2756–7.CrossRefGoogle Scholar
Tanaka, T., Hocker, L. O. & Benedek, G. B. (1973). Spectrum of light scattered from a visco-elastic gel. J. chem. Phys. 59, 5151–9.CrossRefGoogle Scholar
Wada, A., Suda, N., Tsuda, T. & Soda, K. (1969). Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution. J. chem. Phys. 50, 31–5.CrossRefGoogle Scholar
Zimm, B. H. (1956). Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. chem. phys. 24, 269–78.CrossRefGoogle Scholar