Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T23:24:11.859Z Has data issue: false hasContentIssue false

Reverse-correlation methods in auditory research

Published online by Cambridge University Press:  17 March 2009

J. J. Eggermont
Affiliation:
Department of Medical Physics and Biophysics, University of Nijmegen, Nijmegen, The Netherlands
P. I. M. Johannesma
Affiliation:
Department of Medical Physics and Biophysics, University of Nijmegen, Nijmegen, The Netherlands
A. M. H. J. Aertsen
Affiliation:
Department of Medical Physics and Biophysics, University of Nijmegen, Nijmegen, The Netherlands

Extract

Single unit recordings have provided us with a basis for understanding the auditory system, especially about how it behaves under stimulation with simple sounds such as clicks and tones. The experimental as well as the theoretical approach to single unit studies has been dichotomous. One approach, the more familiar, gives a representation of nervous system activity in the form of peri-stimulus-time (PST) histograms, period histograms, iso-intensity rate curves and frequency tuning curves. This approach observes the neural output of units in the various nuclei in the auditory nervous system, and, faced with the random way in which the neurons respond to sound, proceeds by repeatedly presenting the same stimulus in order to obtain averaged results. These are the various histogram procedures (Gerstein & Kiang, 1960; Kiang et al. 1965).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aertsen, A. M. H. J. & Johannesma, P. I. M. (1980). Spectro-temporal receptive field of auditory neurons in the grassfrog. I. Characterization of tonal and natural stimuli. Biol. Cybernet. 38, 223234.CrossRefGoogle Scholar
Aertsen, A. M. H. J. & Johannesma, P. I. M. (1981 a). The spectro-temporal receptive field. A functional characterization of auditory neurons. Biol. Cybernet. 42, 133143.CrossRefGoogle Scholar
Aertsen, A. M. H. J. & Johannesma, P. I. M. (1981 b). A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biol. Cybernet 42, 145156.Google Scholar
Aertsen, A. M. H. J., Johannesma, P. I. M. & Hermes, D. J. (1980). Spectro-temporal receptive fields of auditory neurons in the grassfrog. II. Analysis of the stimulus-event relation for tonal stimuli. Biol. Cybernet. 38, 235248.CrossRefGoogle Scholar
Aertsen, A. M. H. J., Olders, J. H. J. & Johannesma, P. I. M. (1981). Spectro-temporal receptive fields of auditory neurons in the grassfrog. III. Analysis of the stimulus-event relation for natural stimuli. Biol. Cybernet. 39, 195209.CrossRefGoogle ScholarPubMed
Anderson, D. J., Rose, J. E., Hind, J. E. & Brugge, J. F. (1971). Temporal position of discharges in single auditory nerve fibres within the cycle of a sine-wave stimulus: Frequency and intensity effects. J. acoust. Soc. Am. 49, 11311139.CrossRefGoogle ScholarPubMed
Arthur, R. M. (1976). Harmonic analysis of two-tone discharge patterns in cochlear nerve fibers. Biol. Cybernet. 22, 2131.CrossRefGoogle ScholarPubMed
Barrett, J. F. (1963). The use of functionals in the analysis of non-linear physical systems. J. Electron. Control. 15, 567615.CrossRefGoogle Scholar
Bibikov, N. & Gorodetskaya, O. (1981). Coding of amplitude-modulated tones in the midbrain region of the frog. In Neuronal Mechanisms of Hearing (ed. Syka, J. and Aitkin, L.), pp. 347352. New York: Plenum.CrossRefGoogle Scholar
Billings, S. A. & Fakhouri, S. Y. (1978). Identification of a class of non linear systems using correlation analysis. Proc. IEE 125, 691697.Google Scholar
Boer, E. de (1967). Correlation studies applied to the frequency resolution of the cochlea. J. Aud. Res. 7, 209217.Google Scholar
Boer, E. de (1968). Reverse correlation. I. A heuristic introduction to the technique of triggered correlation with application to the analysis of compound systems. Proc. K. ned. Akad. Wet. C 71, 472486.Google Scholar
Boer, E. de (1969). Reverse correlation. II. Initiation of nerve impulses in the inner ear. Proc. K. ned. Akad. Wet. C 72, 129151.Google ScholarPubMed
Boer, E. de (1973). On the principle of specific coding. J. Dynamic Systems. Meas. Contr. 95 G, 265273.CrossRefGoogle Scholar
Boer, E. de (1976 a). On the residue and auditory pitch perception. In Handbook of Sensory Physiology, vol. v/3 (ed. Keidel, W. D. and Neff, W. D.), pp. 479583. Berlin: Springer.Google Scholar
Boer, E. de (1976 b). Cross correlation function of a bandpass nonlinear network. Proc. IEEE 64, 14431444.Google Scholar
Boer, E. de (1979). Polynomial correlation. Proc. IEEE 67, 317318.CrossRefGoogle Scholar
Boer, E. de & Jongh, H. R. de (1978). On cochlear encoding: potentialities and limitations of the reverse correlation technique. J. acoust. Soc. Am. 63, 115135.CrossRefGoogle ScholarPubMed
Boer, E. de & Kuyper, P. (1968). Triggered correlation. IEEE Trans. Biomed. Eng. BME-15, 169179.Google Scholar
Capranica, R. R. (1976). Morphology and physiology of the auditory system. In Frog Neurobiology: A Handbook (ed. Llinás, R. and Precht, W.), pp. 551573. Berlin: Springer.CrossRefGoogle Scholar
Capranica, R. R. & Moffat, A. J. M. (1980). Non linear properties of the peripheral auditory system. In Comparative Studies of Hearing in Vertebrates (ed. Popper, A. N. and Fay, R. R.), pp. 139165. Berlin: Springer.CrossRefGoogle Scholar
Eckhorn, R. & Popel, B. (1979). Generation of gaussian noise with improved quasi-white properties. Biol. Cybernet. 32, 243248.CrossRefGoogle ScholarPubMed
Eggermont, J. J. (1973). Analog modelling of cochlear adaptation. Kybernetik 14, 117126.CrossRefGoogle ScholarPubMed
Eggermont, J. J. (1975). Cochlear adaptation: a theoretical description. Biol. Cybernet. 19, 181190.Google Scholar
Eggermont, J. J., Aertsen, A. M. H. J., Hermes, D. J. & Johannesma, P. I. M. (1981). Spectro-temporal characterization of auditory neurons: redundant or necessary. Hear. Res. 5, 109121.CrossRefGoogle ScholarPubMed
Eggermont, J. J., Aertsen, A. M. H. J. & Johannesma, P. I. M. (1983 a). Quantitative characterization procedure for auditory neurons based on the spectro-temporal receptive field. Hear. Res. 10, 167190.CrossRefGoogle ScholarPubMed
Eggermont, J. J., Aertsen, A. M. H. J. & Johannesma, P. I. M. (1983 b). Prediction of responses of auditory neurons in the midbrain of the grassfrog based on the spectro-temporal receptive field. Hear. Res. 10, 191202.Google Scholar
Eggermont, J. J., Epping, W. J. M. & Aertsen, A. M. H. J. (1983 a). Binaural nearing and neural interaction. In Hearing - Physiological Bases and Psychophysics (ed. Klinke, R. and Hartmann, R.), pp. 237242. Berlin: Springer.CrossRefGoogle Scholar
Eggermont, J. J., Epping, W. J. M. & Aertsen, A. M. H. J. (1983 b). Stimulus dependent neural correlations in the auditory mid-brain of the grassfrog (Rana temporaria L.). Biol. Cybernet. 47, 103117.Google Scholar
Erulkar, S. D., Nelson, P. G. & Bryan, J. S. (1968). Exprimental and theoretical approaches to neural processing in the central auditory pathway. In Contributions to Sensory Physiology, vol. 3 (ed. Neff, W. D.), pp. 149189. New York: Academic Press.Google Scholar
Evans, E. F. (1974). Auditory frequency selectivity and the cochlear nerve. In Facts and Models in Hearing (ed. Zwicker, E. and Terhardt, E.), pp. 118129. Berlin: Springer.CrossRefGoogle Scholar
Evans, E. F. (1977). Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus. In Psychophysics and Physiology of Hearing (ed. Evans, E. F. and Wilson, J. P.), pp. 185192. London: Academic Press.Google Scholar
Evans, E. F. & Elberling, C. (1982). Location-specific components of the gross cochlear action potential. Audiology 21, 204227.CrossRefGoogle ScholarPubMed
Evans, E. F. & Wilson, J. P. (1973). The frequency selectivity of the cochlea. In Basic Mechanisms in Hearing (ed. Moller, A. R.), pp. 519551. New York: Academic Press.CrossRefGoogle Scholar
Fengler, R. (1980). Reverse correlation: Anwendung und Ergebnisse des Verfahrens am peripheren Auditorischen System des Brillen Kaiman. Thesis, Freien Universität, Berlin.Google Scholar
Fernald, R. D. & Gerstein, G. L. (1972). Response of cat cochlear nucleus neurones to frequency and amplitude modulated tones. Brain Res. 45, 471–435.CrossRefGoogle ScholarPubMed
Fuzessery, Z. M. & Feng, A. S. (1982). Frequency selectivity in the anuran auditory midbrain: single unit responses to single and multiple tone stimulation. J. comp. Physiol. 146, 471484.CrossRefGoogle Scholar
Gabor, D. (1946). Theory of communication. J. IEE 93, 429457.Google Scholar
Gerstein, G. L., Butler, R. A. & Erulkar, S. D. (1968). Excitation and inhibition in cochlear nucleus. I. Tone-burst stimulation. J. Neuro-physiol. 31, 526536.Google Scholar
Gerstein, G. L. & Kiang, N. Y. S. (1960). An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys. J. 1, 1528.CrossRefGoogle Scholar
Gisbergen, J. A. M. van (1974). Characterization of responses to tone and noise stimuli of neurons in the cats cochlear nuclei. Thesis, Nijmegen.Google Scholar
Gisbergen, J. A. M. van, Grashuis, J. L., Johannesma, P. I. M. & Vendrik, A. J. H. (1975 a). Neurons in the cochlear nucleus investigated with tone and noise stimuli. Expl Brain Res. 23, 387406.Google Scholar
Gisbergen, J. A. M. van, Grashuis, J. L., Johannesma, P. I. M. & Vendrik, A. J. H. (1975 b). Statistical analysis and interpretation of the initial response of cochlear nucleus neurons to tone bursts. Expl Brain Res. 23, 407423.CrossRefGoogle Scholar
Goblick, T. J. & Pfeiffer, R. R. (1969). Time-domain measurements of cochlear nonlinearities using combination click stimuli. J. acoust. Soc. Am. 46, 924938.CrossRefGoogle ScholarPubMed
Goldstein, J. L., Baer, Th. & Kiang, N. Y. S. (1971). A theoretical treatment of latency, group delay, and tuning characteristics for auditory nerve responses to clicks and tones. In Physiology of the Auditory System (ed. Sachs, M. B.), pp. 133141. Baltimore: National Educational Consultants.Google Scholar
Goldstein, J. L. & Kiang, N. Y. S. (1968). Neural correlates of the aural combination tone 2f 1f 2 Proc. IEEE 56, 981992.CrossRefGoogle Scholar
Grashuis, J. L. (1974). The pre-event stimulus ensemble. An analysis of the stimulus response relation for complex stimuli applied to auditory neurons. Thesis, Nijmegen.Google Scholar
Harris, D. M. & Dallos, P. (1979). Forward masking of auditory nerve fiber responses. J. Neurophysiol. 42, 10831107.CrossRefGoogle ScholarPubMed
Harrison, R. V. & Evans, E. F. (1982). Reverse correlation study of cochlear filtering in normal and pathological guinea pig ears. Hear. Res. 6, 303314.CrossRefGoogle ScholarPubMed
Hermes, D. J., Aertsen, A. M. H. J., Johannesma, P. I. M. & Egger-Mont, J. J. (1981). Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grassfrog (Rana temporaria L.) investigated with noise stimuli. Hear. Res. 5, 145179.CrossRefGoogle Scholar
Hermes, D. J., Eggermont, J. J., Aertsen, A. M. H. J. & Johannesma, P. I. M. (1982). Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grassfrog (Rana temporaria L.) investigated with tonal stimuli. Hear. Res. 6, 103126.CrossRefGoogle Scholar
Heusden, E. van & Smoorenburg, G. F. (1983). Response from AVCN units in the cat before and after inducement of an acute noise trauma. Hear. Res. II, 295326.Google Scholar
Johannesma, P. I. M. (1971). Dynamical aspects of the transmission of stochastic neural signals. In Proc. First European Biophysics Congress (ed. Broda, E., Locker, A. and Springer-Lederer, H.), pp. 329333. Vienna: Verlag der Wiener Medizinischen Akademie.Google Scholar
Johannesma, P. I. M. (1972). The pre-response stimulus ensemble of neurons in the cochlear nucleus. In Proc. of the IPO Symp. on Hearing Theory (ed. Cardozo, B. L.), pp. 5869. Eindhoven: IPO.Google Scholar
Johannesma, P. I. M. (1980). Functional identification of auditory neurons based on stimulus event correlation. In Psychophysical, Physiological and Behavioral Studies in Hearing (ed. van den Brink, G. and Bilsen, F. A.), pp. 7784. Delft University Press.CrossRefGoogle Scholar
Johannesma, P. I. M. (1981). Neural representation of sensory interpetation of neural activity. In Adv. Physiol. Sci. vol. 30 (ed. Székely, G., Lábos, E. and Damjanovich, S.), pp. 103125. Budapest: Akadémiai Kiadó.Google Scholar
Johannesma, P. I. M. & Aertsen, A. M. H. J. (1982). Statistical and dimensional analysis of the neural representation of the acoustic biotope of the frog. J. Medical Systems 6, 399421.Google Scholar
Johannesma, P., Aertsen, A., Cranen, B. & Erning, L. van (1981). The phonochrome: a coherent spectro-temporal representation of sound. Hear. Res. 5, 123145.Google Scholar
Johannesma, P. & Eggermont, J. (1983). Receptive fields of auditory neurons in the midbrain of the frog as functional elements of acoustic communication. In Advances in Vertebrate Neuroethology (ed. Ewert, J. P., Capranica, R. R. and Ingle, D. J.) pp. 901910. New York: Plenum.CrossRefGoogle Scholar
Johannesma, P. I. M., Gisbergen, J. A. M. Van, Grashuis, J. L. & Vendrik, A. J. H. (1973). Forward and backward analysis of stimulus response relations of single cells in the cochlear nucleus. In Proc. IVth Int. Biophys. Congr. pp. 508523. Moscow.Google Scholar
Johnson, D. H. (1980). Applicability of white-noise nonlinear system analysis to the peripheral auditory system. J. acoust. Soc. Am. 68, 876884.CrossRefGoogle Scholar
Jongh, H. R. De (1978). Modelling the peripheral auditory system. Thesis, Amsterdam.Google Scholar
Kemp, D. T. & Chum, R. (1980). Properties of the generator of stimulated acoustic emissions. Hear. Res. 2, 213232.Google Scholar
Kiang, N. Y. S. & Moxon, E. C. (1972). Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. Rhinol. Laryngol. 81, 714730.Google Scholar
Kiang, N. Y. S. & Moxon, E. C. (1974). Tails of tuning curves of auditory nerve fibers. J. acoust. Soc. Am. 55, 620630.CrossRefGoogle ScholarPubMed
Kiang, N. Y. S., Watanabe, T., Thomas, E. C. & Clark, L. F. (1965). Discharge Patterns of Single Fibers in the Cats Auditory Nerve. Cambridge, Mass.: MIT Press.Google Scholar
Klinke, R. & Pause, M. (1980). Discharge properties of primary auditory fibers in Caiman Crocodillus: comparisons and contrasts to the mammalian auditory nerve. Expl Brain Res. 38, 137150.CrossRefGoogle Scholar
Lammers, H. C. & Boer, E. De(1979). Regression function of a bandpass nonlinear (BPNL) network. Proc. IEEE 67, 432434.CrossRefGoogle Scholar
Lee, Y. W. & Schetzen, M. (1965). Measurement of the Wiener kernels of a non-linear system by cross-correlation. Int. J. Control 2, 237254.CrossRefGoogle Scholar
Leppelsack, H. J. & Vogt, M. (1976). Responses of auditory neurons in the forebrain of a songbird to stimulation with species-specific sounds. J. comp. Physiol. 107, 263274.CrossRefGoogle Scholar
Liberman, M. C. (1978). Auditory nerve response from cats raised in a low-noise chamber. J. acoust. Soc. Am. 63, 442445.CrossRefGoogle Scholar
Marmarelis, P. Z. & Marmarelis, V. Z. (1978). Analysis of Physiological Systems. The White Noise Approach. New York: Plenum.CrossRefGoogle Scholar
Møller, A. R. (1973). Statistical evaluation of the dynamic properties of cochlear nucleus units using stimuli modulated with pseudorandom noise. Brain Res. 57, 443456.CrossRefGoogle ScholarPubMed
Møller, A. R. (1975). Latency of unit-responses in cochlear nucleus determined in two different ways. J. Neurophysiol. 38, 812821.CrossRefGoogle ScholarPubMed
Møller, A. R. (1976 a). Dynamic properties of the response of single neurones in the cochlear nucleus of the rat. J. Physiol. 259, 6382.CrossRefGoogle ScholarPubMed
Møller, A. R. (1976 b). Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus. Acta physiol. Scand. 98, 157167.CrossRefGoogle ScholarPubMed
Møller, A. R. (1977). Frequency selectivity of single auditory nerve fibers in response to broad band noise stimuli. J. acoust. Soc. 62, 135142.CrossRefGoogle Scholar
Møller, A. R. (1978). Frequency selectivity of the peripheral auditory analyzer studies using broad band noise. Acta physiol. Scand. 104, 2432.Google Scholar
Narins, P. M. (1983). Frequency selectivity in the inner ear of anuran amphibians. In Hearing-Physiological Bases and Psychophysics (ed. Klinke, R. and Hartmann, R.), pp. 7075. Berlin: Springer.Google Scholar
Palm, G. (1978). On representation and approximation of non-linear systems. Biol. Cybernet. 31, 119124.CrossRefGoogle Scholar
Pfeiffer, R. R. (1970). A model for two-tone inhibition of single cochlear nerve fibers. J. acoust. Soc. Am. 48, 13731378.CrossRefGoogle Scholar
Pfeiffer, R. R. & Kim, D. O. (1972). Response patterns of single cochlear nerve fibres to click stimuli: descriptions for cat. J. acoust. Soc. Am. 52, 16691677.CrossRefGoogle ScholarPubMed
Poggio, T. (1981). Wiener like identification techniques. In Theoretical Approaches in Neurobiology (ed. Reichardt, W. E. and Poggio, T.), pp. 6063. Cambridge: MIT Press.Google Scholar
Potter, R. K., Kopp, G. A. & Green, H. C. (1947). Visible Speech. New York: Van Nostrand.Google Scholar
Rihaczek, A. W. (1968). Signal energy distribution in time and frequency. IEEE Trans. Inf. Theory 14, 369374.CrossRefGoogle Scholar
Rose, J. E., Brugge, J. F., Anderson, D. J. & Hind, J. E. (1967). Phase locked responses to low frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30, 769793.Google Scholar
Rose, J. E., Hind, J. E., Anderson, D. J. & Brugge, J. F. (1971). Some effects of stimulus intensity in response of auditory nerve fibers in the squirrel monkey. J. Neurophysiol. 34, 685699.Google Scholar
Sachs, M. B. & Young, E. D. (1980). Effects of non-linearities on speech encoding in the auditory nerve. J. acoust. Soc. Am. 68, 858875.CrossRefGoogle Scholar
Segundo, J. P. (1970). Communications and coding by nerve cells. In The Neurosciences, Second Study Proram (ed. Schmitt, F. O.), pp. 569586. New York: Rockefeller University Press.Google Scholar
Sellick, P. M., Patuzzi, R. & Johnstone, B. M. (1982). Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J. acoust. Soc. Am. 72, 131141.CrossRefGoogle ScholarPubMed
Sellick, P. M. & Russell, I. J. (1979). Two tone suppression in cochlear hair cells. Hear. Res. 1, 227236.CrossRefGoogle Scholar
Smith, R. L. (1979). Adaptation, saturation and physiological masking in single auditory nerve fibers. J. acoust. Soc. Am. 65, 166178.Google Scholar
Smolders, J. W. T., Aertsen, A. M. H. J. & Johannesma, P. I. M. (1979). Neural representation of the acoustic biotope, a comparison of the response of auditory neurons to tonal and natural stimuli in the cat. Biol. Cybernet. 35, 1120.Google Scholar
Spekreijse, H. & Reits, D. (1982). Sequential analysis of the visual evoked potential system in man; nonlinear analysis in a sandwich system. Ann. N. Y. Acad. Sci. 388, 7297.Google Scholar
Swerup, C. (1978). On the choice of noise for the analysis of the peripheral auditory system. Biol. Cybernet. 29, 97104.CrossRefGoogle ScholarPubMed
Symmes, D. (1981). On the use of natural stimuli in neurophysiological studies of audition. Hear. Res. 4, 203214.CrossRefGoogle ScholarPubMed
Victor, J. D. & Knight, B. W. (1979). Nonlinear analysis with an arbitrary stimulus ensemble. Q. appl. Math. 37, 113136.Google Scholar
Walkowiak, W. (1980). The coding of auditory signals in the torus semicircularis of the fire-bellied toad and the grassfrog: responses to simple stimuli and conspecific calls. J. comp. Physiol. 138, 131148.CrossRefGoogle Scholar
Webster, W. R. & Aitkin, L. M. (1975). Central auditory processing. In Handbook of Psychobiology (ed. Gazzaniga, M. S. and Blakemore, C.), pp. 325364. New York: Academic Press.CrossRefGoogle Scholar
Wickesberg, R. E., Dickson, J. W., Gibson, M. M. & Geisler, C. D. Wiener kernel analysis of the responses of anteroventral cochlear nucleus neurons in the cat. (Manuscript.)Google Scholar
Wilson, J. P. & Evans, E. F. (1975). Systematic error in some methods of reverse correlation. J. acoust. Soc. Am. 57, 215216.CrossRefGoogle ScholarPubMed
Young, E. D. & Sachs, M. B. (1979). Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers. J. acoust. Soc. Am. 66, 13811403.Google Scholar