Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T04:11:45.387Z Has data issue: false hasContentIssue false

The Theory of Multi-Stationary State Transitions and Biosynthetic Control Processes

Published online by Cambridge University Press:  17 March 2009

B. H. Lavenda
Affiliation:
Department of Physical Chemistry, The Hebrew University, Jerusalem, Israel

Extract

Factors involved in genetic control of protein synthesis can be classified according to their structural and regulatory roles. The structural constitution of the genetic locus determines the ordering of amino acids in the protein primary structure while regulatory factors influence the rates of protein synthesis. The genetic scheme, proposed by Jacob & Monod (1961), groups genes according to their structural and regulatory functions. This genetic classification alone is insufficient to explain the dynamics of regulatory behaviour. Basic questions such as why cells with the same complement of genes synthesize more of one protein than another are left unanswered. The answers to such questions would shed some light on the dynamical mechanism of tissue differentiation and embryological development. Regulation of protein synthesis should be the result of a combination of structural genetic factors and dynamic biochemical processes. It will be shown in this article that the interaction of structural and dynamic factors leads to a coherent and efficient control mechanism of biosynthesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R. G. D. (1966). Mathematical Economics, ch. 9. London: Macmillan.Google Scholar
Andronov, A. A., Vitt, A. A. & Khaikin, S. E. (1966). Theory of Oscillators. Oxford: Pergamon Press.Google Scholar
Arnstein, H. R. V. (1967). In Regulation of Nucleic Acid and Protein Biosynthesis (ed. Koningsberger, V. V. and Bosch, L.), p. 187. Amsterdam: Elsevier.Google Scholar
Callen, H. (1960). Thermodynamics. New York: Wiley.Google Scholar
Groot, S. R.de & Mazur, P. (1961). Nonequilibrium Thermodynamics. Amsterdam: North Holland.Google Scholar
Edsall, J. T. & Wyman, J. (1958). Biophysical Chemistry, p. 624. New York: Academic Press.Google Scholar
Feigelson, P. & Greengard, O. (1961). The activation and induction of rat liver tryptophan pyrrolase in vivo by its substrate. J. biol. Chem. 236, 158.Google Scholar
Gilbert, W. & Müeller-Hill, B. (1966). Isolation of the lac repressor. Proc. natn. Acad. Sci. U.S.A. 56, 1891.CrossRefGoogle ScholarPubMed
Glansdorff, P. & Prigogine, I. (1971). Thermodynamic Theory of Structure, Stability, and Fluctuations. London: Wiley-Interscience.Google Scholar
Goodwin, B. C. (1963). Temporal Organization In Cells. London: Academic Press.Google Scholar
Goodwin, B. C. & Cohen, M. (1969). A phase-shift model for the spatial and temporal organization of developing systems. J. theor. Biol. 25, 49.CrossRefGoogle ScholarPubMed
Hess, B. C. & Chance, B. (1961). Metabolic control mechanisms. VI. Chemical events after glucose addition to ascites tumor cells. J. biol. Chem. 236, 239.CrossRefGoogle ScholarPubMed
Jacob, F. & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318.CrossRefGoogle ScholarPubMed
Lavenda, B. H. (1970 a). Thesis, Université Libre de Bruxelles, Brussels, Belgium.Google Scholar
Lavenda, B. H. (1970 b). Annex Thesis, Université Libre de Bruxelles, Brussels, Belgium.Google Scholar
Lavenda, B. H. (1971). Co-operative effects and charge fluctuation forces. J. theor. Biol. 31, 395.CrossRefGoogle ScholarPubMed
Lavenda, B. H. (1972 a). Concepts of stability and symmetry in irreversible thermodynamics: I. Found. Phys. 2 (2/3), 161.Google Scholar
Lavenda, B. H. (1972 b). Generalized thermodynamic potentials and uni versal criteria of evolution. Lettere Al Nuovo Cimento, 3, 10, 385.CrossRefGoogle Scholar
Lavenda, B. H., Nicollis, G. & Herschkowitz-Kaufman, M. (1971) Chemical instabilities and relaxation oscillations. J. theor. Biol. 32, 28CrossRefGoogle ScholarPubMed
Minorsky, N. (1962). Non-linear Oscillations. New York: van Nostrand.Google Scholar
Pardee, A. B. (1962). In The Bacteria, vol. III (ed. Gunsalas, I. C. and Stanier, R. Y.). New York: Academic Press.Google Scholar
Peltier, J.Résolution numériques des equations Algébriques. Paris: Gauthier-Villars.Google Scholar
Poincaré, H. (1892). Les Méthodes nouvelles de la mécanique céleste. Paris: Gauthier-Villars.Google Scholar
Prigogine, I. (1967). Thermodynamics of Irreversible Processes, 3rd ed.New York: Wiley.Google Scholar
Prigogine, I. & Nicolis, G. (1967). On symmetry-breaking instabilities in dissipative systems. J. chem. Phys. 46, 3542.CrossRefGoogle Scholar
Prigogine, I. & Lefever, R. (1968). Symmetry-breaking instabilities in dissipative systems: II. J. chem. Phys. 48, 1695.CrossRefGoogle Scholar
Ptashne, M. (1967). Isolation of the λ phage repressor. Proc. natn. Acad. Sci. U.S.A. 57, 306.Google Scholar
Riggs, A. D., Suzuki, H. & Bourgeois, S. (1970). lac repressor-operator interaction. J. molec. Biol. 48, 67.Google Scholar
Ronsmans, P. (1964). Sur la stabilité et index des singularités multiples d'un système différentiel autonome. Bull. Acad. r. Beig. Cl. Sci. 50, 142.Google Scholar
Routh, E. J. (1877). The Stability of Motion. London: Macmillan.Google Scholar
Stent, G. S. (1967). In Organizational Biosynthesis (ed. Vogel, H. J.Lampen, J. O. and Bryson, V.), p. 99. London: Academic Press.CrossRefGoogle Scholar
Tikhonov, A. N. (1948). Mat. Sb. 22 (64), 193.Google Scholar
Tolman, R. C. (1936). The Principles of Statistical Mechanics. London: Oxford University Press.Google Scholar
Turing, A. M. (1952). The chemical basis of inorphogenesis. Phil. Trans. R. Soc. B 237, 37.Google Scholar
Turnbull, H. W. (1957). Theory of Equations. New York: Interscience.Google Scholar
Vedenov, A. A., Velikhov, E. P. & Sagdeev, R. Z. (1961). Nucl. Fusion I, 82.CrossRefGoogle Scholar
Waddington, C. H. (1965). The Strategy of the Genes. London: Allen and Unwin.Google Scholar
Watson, J. D. (1965). Molecular Biology of the Genes. New York: W. A. Benjamin, Inc.Google Scholar
Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. theor. Biol. 25, 1.CrossRefGoogle ScholarPubMed
Wyman, J. (1964). In Advances in Protein Chemistry, vol. 19 (ed. Anfinsen, C. Jr, Anson, M. L., Edsall, J. T. and Richards, F. M.), p. 224. London: Academic Press.Google Scholar
Wyman, J. (1965). The binding potential, a neglected linkage concept. J. molec. Biol. II, 631.CrossRefGoogle Scholar