Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T08:46:06.048Z Has data issue: false hasContentIssue false

Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions

Published online by Cambridge University Press:  17 March 2009

Tomaso Poggio
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Werner Reichardt
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen

Abstract

Visual information processing in the nervous system of flies begins with a large array of photoreceptors, which transduce a light intensity pattern, and culminates in a behavioural response that depends on that pattern.

In the previous paper we have given a quantitative description of visual control of flight orientation in the fly. This description can account for fixation, tracking and some instances of spontaneous pattern preference behaviour. The phenomenological theory outlines the basic logical organization of the visual control system of the fly. It requires the neural network between the receptors and the flight muscles to perform two main computations on the visual input. One computation extracts movement information (the term r(ψ)ψ b of the phenomenological equation). The other provides position information (the term D(ψ)).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, B. D., Arbib, M. A. & Manes, E. G. (1975). Foundations of system theory: multidecomposable system. Preprint.Google Scholar
Arnett, D. W. (1971). Receptive field organization of units in the first optic ganglion of Diptera. Science N. Y. 173, 929–31.CrossRefGoogle ScholarPubMed
Atkinson, J. & Campbell, F. W. (1973). The effect of phase on the perception of compound gratings. Vision Res. 14, 159–62.CrossRefGoogle Scholar
Baker, P. S. (1975). Optomotor responses of flying locusts. Exp. Brain Res. Suppl. 23, 13.Google Scholar
Barlow, H. B. & Levich, W. R. (1965). The mechanism of directionally sensitive units in rabbit's retina. J. Physiol. 178, 477504.CrossRefGoogle Scholar
Barlow, R. B. & Lange, G. D. (1974). A nonlinearity in the inhibitory interactions in the lateral eye of Limulus. J. gen. Physiol. 63, 579589.CrossRefGoogle ScholarPubMed
Bedrosian, E. & Rice, S. O. (1971). The output properties of Volterra systems. Proc. IEEE 59, 12.Google Scholar
Beersma, D. G. M., Stavenga, D. G. & Kuiper, J. W. (1975). Organization of visual axes in the compound eye of the fly Musca domestica L. and behavioural consequences. J. comp. physiol. Psychol. 102, 305–20.CrossRefGoogle Scholar
Benzer, S. (1973). Genetic dissection of behavior. Scient. Am. 229, 2437.CrossRefGoogle ScholarPubMed
Bishop, L. G. & Keehn, D. G. (1967). Neural correlates of the optomotor response in the fly. Kybernetik 3, 288295.CrossRefGoogle ScholarPubMed
Bizzi, F., Kalil, R. E., Morasso, P. & Tagliasco, V. (1972). Central programming and peripheral feedback during eye–head coordination in monkeys. Biblthca opthal. 82, 220–32.Google ScholarPubMed
Boscheck, C. B. (1971). On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch. 118, 369409.CrossRefGoogle Scholar
Braitenberg, V. (1967). Patterns of projections in the visual system of the fly. I. Retina–lamina projections. Exp. Brain Res. 3, 271–98.CrossRefGoogle ScholarPubMed
Braitenberg, V. (1970). Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7, 235–42.CrossRefGoogle Scholar
Braitenberg, V. (1972). Periodic structures and structural gradients in the visual ganglia of the fly. In Information Processing in the Visual System of Arthropods (ed. Wehner, R.), pp. 315. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Braitenberg, V. & Hauser-Hohlschuh, H. (1972). Patterns of projection in the visual system of the fly. II. Quantitative aspects of second order neurons in relation to models of movement perception.. Exp. Brain Res. 16, 184209.CrossRefGoogle ScholarPubMed
Buchner, E. (1974). Bewegungsperzeption in einem visuellen System mit gerastertem Eingang. Dissertation Eberhard-Karls-Universität Tübingen.Google Scholar
Buchner, E. (1976). Elementary movement detectors in an insect visual system. Biol. Cybernetics, (in the Press.)CrossRefGoogle Scholar
Buchner, S. & Reichardt, W. (1976). Delay time between light stimulation and motor response in the fly. (In preparation.)Google Scholar
Bülthoff, H (1975). Nachweis einer Bewegungsillusion im visuellen System der Fruchtfliege Drosophila. Diplomarbeit Eberard-Karls-Universität Tübingen.Google Scholar
Bülthoff, H. & Götz, K. G. (1976). Movement illusions in the fruitfly Drosophila. (In preparation.)Google Scholar
Campbell, F. W. & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. J. Physiol. 197, 551–66.CrossRefGoogle Scholar
Campos-Ortega, J. A. & Strausfeld, N. J. (1972 a). Columns and layers in the second synaptic region of the fly's visual system: the case for two superimposed neuronal architectures. In Information Processing in the Visual System of Arthropods (ed. Wehner, R.), pp. 31–6. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Campos-Ortega, J. A. & Strausfeld, N. J. (1972 b). The columnar organization of the second synaptic region of the visual system of Musca domestica L. I. Receptor terminals in the medulla. Z. Zellforsch. 124, 561–85.CrossRefGoogle Scholar
Campos-Ortega, J. A. & Strausfeld, N. J. (1973). Synaptic connections of intrinsic cells and basket arborisations in the external plexiform layer of the fly's eye. Brain Res. 59, 119–36.CrossRefGoogle ScholarPubMed
Campos-Ortega, J. A. & Strausfeld, N. J. (1976). The synaptic organisation of second order and centrifugal neurons in the 1st synaptic region of the fly's visual system. (In preparation.)Google Scholar
Coleman, B. D. (1971 a). On retardation theorems. Archs ration. Mech. Analysis 43, 123.CrossRefGoogle Scholar
Coleman, B. D. (1972 b). A mathematical theory of lateral sensory inhibition. Archs ration. Mech. Analysis 43, 7999.CrossRefGoogle Scholar
Collett, T. S. (1970). Centripetal and centrifugal visual cells in medulla of insect optic lobe. J. Neurophysiol. 33, 239–56.CrossRefGoogle ScholarPubMed
Collett, T. S. (1971). Visual neurons for tracking moving targets. Nature, 232, 127–30.CrossRefGoogle ScholarPubMed
Collett, T. S. & Blest, A. D. (1966). Binocular, directionally selective neurons, possibly involved in the optomotor response of insects, Nature, 212, 1330–3.CrossRefGoogle ScholarPubMed
Collett, T. S. & Land, M. (1975 a). Visual control of flight behaviour in the hoverfly, Syritta pipiens. J. comp. Physiol. 99, 166.CrossRefGoogle Scholar
Collett, T. S. & Land, M. (1975 b). Visual spatial memory in a hoverfly. J. comp. Physiol. 100, 5984.CrossRefGoogle Scholar
De, Santis R. M. & Porter, W. A. (1975). On the analysis of feedback systems with a polynomic plant. Int. Jnl Control 21, 159–75.Google Scholar
De, Voe R. D. & Ockleford, E. M. (1976). Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala. (In print.)Google Scholar
Diener, H. C., Wist, E. R., Dichgans, J. & Brandt, Th. (1975). The spatial frequency effect n perceived velocity. Vision Res. (In print.)Google Scholar
van, Doorn A. J. & Koenderink, J. J. (1976). A directionally sensitive network. Biol. Cybernetics 21, 161-70.Google Scholar
Dvorak, D. R., Bishop, L. G. & Eckert, H. E.On the identification of movement detectors in the fly optic lobe. J. comp. Physiol. 100, 523.CrossRefGoogle Scholar
Eckert, H. E. (1973). Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14, 123.CrossRefGoogle ScholarPubMed
Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Naturwissenchaften 10, 465523.CrossRefGoogle Scholar
Fermi, G. & Reichardt, W. (1963). Optornotorische Reaktionen der Fliege Musca domestica. Kybernetik 2, 1528.Google ScholarPubMed
Fliess, M. (1976). Un outil algébrique: les séries formelles non commutatives. In Algebraic System Theory (ed. Marchesini, G.). Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Foster, D. H. (1971). A model of the human visual system in its response to certain classes of moving stimuli. Kybernetik 8, 6984.CrossRefGoogle Scholar
Franceschini, N. (1975). Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In Photoreceptor Optics (ed. Snyder, A. W. and Menzel, R.). Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Geiger, G. (1975). Short term learning in flies. Naturwissenschaften 11, 539.CrossRefGoogle Scholar
Geiger, G. & Poggio, T. (1975 a). The orientation of flies towards visual patterns: on the search for the underlying functional interactions. Biol. Cybernetics 17, 116.Google Scholar
Geiger, G. & Poggio, T. (1975 b). The Müller–Lyer figure and the fly. Science, N. Y. 190, 479–80.CrossRefGoogle ScholarPubMed
Gel'fand, I. M. & Vilenkin, N. Y. (1964). Generalized Functions, vol. IV. New York: Academic Press.Google Scholar
Gerritts, H. J. M. & Vendrik, A. J. H. (1972). Eye movements necessary for continuous perception during stabilization of retinal images. Biblthca ophthal. 82, 339–47.Google Scholar
Glezer, V. D., Lenshina, L. I., Nevskaya, A. A. & Prazdmikova, N. V. (1974). Studies on visual pattern recognition in man and animals. Vision Res. 14, 555–83.CrossRefGoogle Scholar
Götz, K. G. (1964). Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 7792.CrossRefGoogle Scholar
Götz, K. G. (1965). Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215–21.CrossRefGoogle ScholarPubMed
Götz, K. G. (1968). Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199208.CrossRefGoogle ScholarPubMed
Götz, K. G. (1971). Spontaneous preferences of visual objects in Drosophila. Drosophila Information Service 46, 62.Google Scholar
Götz, K. G. (1972). Principles of optomotor reactions in insects. Biblthca ophthal. 82, 251–9.Google ScholarPubMed
Götz, K. G. (1975 a). The optomotor equilibrium of the Drosophila navigation system. J. camp. Physiol. 99, 187–120.CrossRefGoogle Scholar
Götz, K. G. (1975 b). Hirnforschung am Navigationssystem der Fliegen. Naturwissenschaften 62, 468–75.CrossRefGoogle Scholar
Graham, B. & Haken, H. (1971). Generalized thermodynamic potential for Markov systems in detailed balance. Z. Phys. 243, 289.CrossRefGoogle Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1973). Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In Handbook of Sensory Physiology, vol. VII/3A (ed. Jung, R.), pp. 333429. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Halme, A., Orava, J. & Blomberg, H. (1971). Polynomial operators in non-linear systems theory. Int. J. Systems. Sci. 2, 2547.CrossRefGoogle Scholar
Harris, W. A., Star, W. S. & Walker, J. A. (1976). Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. (In print.)Google Scholar
Hartline, H. K. & Ratliff, F. (1972). Inhibitory interaction in the retina of Limulus. In: Handbook of Sensory Physiology, vol. VII/2 (ed. Fuortes, M. G. F.), pp. 381448. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Hassenstein, B. (1951). Ommatidienraster und afferente Bewegungsintegration (Versuche am Rüsselkäfer Chiorophanus viridis). Z. vergi. Physiol. 33, 301–26.CrossRefGoogle Scholar
Hassenstein, B. (1958). Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern. Z. vergl. Physiol. 40, 556–92.CrossRefGoogle Scholar
Hassenstein, B. (1959). Optokinetische Wirksamkeit bewegter periodischer Muster. Z. Naturf. 14 b, 659–74.CrossRefGoogle Scholar
Hassenstein, B. & Reichardt, W. (1956). Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkafers Chlorophanus. Z. Naturf. 11 b, 513–24.CrossRefGoogle Scholar
Hausen, K. (1976). Funktionsstruktur und Konnektivität bewegungsempfindlicher Neuronen der Lobula Plate von Calliphora. Dissertation Eberhard-Karls-Universität Tübingen.Google Scholar
Heide, C. (1975). Properties of a motor output system involved in the optomotor response in flies. Biol. Cybernetics 20, 99112.CrossRefGoogle Scholar
Heimburger, L., Poggio, T. & Reichardt, W. (1976). A special class of nonlinear interactions in the visual system of the fly. Biol. Cybernetics 21, 103–5.CrossRefGoogle Scholar
Heisenberg, M. (1972). Comparative behavioral studies on two mutants of Drosophila. J. comp. physiol. 80, 119–36.CrossRefGoogle Scholar
Heisenberg, M. (1976). Genetic approach to a visual system. In Handbook of Sensory Pshysiology, (in print.) Berlin, Heidelberg, New York: Springer- Verlag.Google Scholar
Heisenberg, M. & Götz, K. G. (1975). The use of mutations for the partial degradation of vision in Drosophila melanogaster. J. comp. Physiol. 98, 217–41.CrossRefGoogle Scholar
Hengstenberg, R. (1973). The effect of pattern movement on the impulse activity of the cervical connective of Drosophila melanogaster. Z. Naturf. 28 c, 593–6.CrossRefGoogle ScholarPubMed
Hengstenberg, R. & Götz, K. G. (1967). Der Einfluss des Schirmpigmentgehalts auf die Helligkeits-und Kontrastwahrnehmung von Drosophila-Augenmutanten. Kybernetik 3, 276–85.CrossRefGoogle Scholar
Henning, H. B., Hertz, B. G. & Broadbent, D. E. (1975). Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency. Vision Res. 15, 887–97.CrossRefGoogle ScholarPubMed
Hertz, M. (1934). Zur Physiologic des Formen- und Bewegungssehens. I. Auflösungsvermögen des Bienenauges und optomotorische Reaktion. Z. vergl. Physiol. 21, 579603.CrossRefGoogle Scholar
Hille, E. & Phillips, R. S. (1957). Functional analysis and semi-groups. Am. Math. Soc. vol. XXXI. Providence.Google Scholar
Horn, E. & Wehner, R. (1975). The mechanism of visual pattern fixation in the walking fly, Drosophila melanogaster. J. comp. Physiol. 101, 3956.CrossRefGoogle Scholar
James, H. M., Nichols, N. B. & Phillips, R. S. (1947). Theory of Servomechanisms. New York: McGraw-Hill.Google Scholar
Järvilehto, M. & Zettler, F. (1970). Micro-localisation of lamina-located visual cell activities in the compound eye of the blowfly Callihora. Z. vergi. Physiol. 69, 134–8.CrossRefGoogle Scholar
Järvilehto, M. & Zettler, F. (1971). Localized intracellular potentials from pre- and post-synaptic components in the external plexiform layer of an insect retina. Z. vergl. Physiol. 75, 422–40.CrossRefGoogle Scholar
Järvilehto, M. & Zettler, F. (1973). Electrophysiological–histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z. Zellforsch. 136, 291306.CrossRefGoogle ScholarPubMed
Jerne, N. K. (1975). The immune system. Harvey Lect.Google Scholar
Julesz, B. (1971). Foundations of Cyclopean Perception. University of Chicago Press.Google Scholar
Julesz, B. (1975). Experiments in the visual perception of texture. Scient. Am. 232, 3443.CrossRefGoogle ScholarPubMed
Kelly, D. H. (1972). Flicker. Handbook of Sensory Physiology, VII/4 (ed. Jameson, D. and Hurvich, L. M.), pp. 273302. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Kirmse, W. & Lässig, P. (1969). Eye movements of man and head movements of special insects corresponding to visual patterns – an example of functional analogy. In Visual Information Processing and Control of Motor Activity, pp. 237–41. Proceedings of the International Symposium, Sofia.Google Scholar
Kirschfeld, K. (1967). Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 2, 248–70.Google Scholar
Kirschfeld, K. (1972). The visual system of Musca: studies on optics, structure and function. In Information Processing in the Visual System of Arthropods (ed. Wehner, R.), pp. 6174. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Kirschfeld, K. (1973). Das neurale Superpositionsauge. Fortschr. Zool. 21, 229–57.Google Scholar
Kirschfeld, K. & Lutz, B. (1974). Lateral inhibition in the compound eye of the fly, Musca. Z. Naturf. 29 c, 95–7.CrossRefGoogle ScholarPubMed
Kirschfeld, K. & Snyder, A. W. (1975). Waveguide mode effects, birefringence and dichroism in fly photoreceptors. In Photoreceptor Optics (ed. Snyder, A. W. and Menzell, R.), pp. 5677. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Kunze, P. (1961). Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z. vergi. Physiol. 44 656–84.CrossRefGoogle Scholar
Land, M. F.Head movement of flies during visually guided flight. Nature, 243, 299300.CrossRefGoogle Scholar
Land, M. F. & Collett, T. S. (1974). Chasing behaviour of houseflies (Fannia canicularis): a description and analysis. J. comp. Physiol. 89, 331–57.CrossRefGoogle Scholar
Laughlin, S. B. (1973). Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second-order neurons. J. comp. Physiol. 84, 335–55.CrossRefGoogle Scholar
Laughlin, S. B. (1974). Neural integration in the first optic neuropile of dragonflies. III. The transfer of angular information. J. comp. Physiol. 99, 377–96.CrossRefGoogle Scholar
Laughlin, S. B. (1975). Receptor and interneuron light-adaptation in the dragonfly visual system. Z. Naturf. 30 c, 306–8.CrossRefGoogle ScholarPubMed
Lee, Y. W. & Schetzen, M. (1965). Measurement of the Wiener kernels of a non-linear system by cross-correlation. Int. Jnl Control 2, 237–54.CrossRefGoogle Scholar
Lettvin, J. W., Maturana, H. R., McCulloch, W. S. & Pitts, W. (1959). What the frog's eye tells the frog's brain. Proc. Instn Radio Engrs. 47, 1940–51.Google Scholar
Levine, J. (1973). Properties of the nervous system controlling flight in Drosophila melanogaster. J. comp. Physiol. 84, 129–66.CrossRefGoogle Scholar
Lindsey, W. C. (1972). Synchronization Systems in Communication and Control. Englewood Cliffs, N.J.: Prentice-Hall, Inc.Google Scholar
Liske, E. (1976). Der Einfluss von Mechanorezeptoren auf das Flugsteuerungssystem der Fliege Calliphora. Symp. ‘Neuronale Grundlagen des Verhaltens’, Darmstadt.Google Scholar
MacKay, D. M. (1972). In Auditory Processing of Biologically Significant Sounds (ed. Worden, F. G. and Galambos, R.). N.R.P. Bulletin 10, 78.Google Scholar
Maffei, L. & Fiorentini, A. (1973). The visual cortex as a spatial frequency analyzer. Vision Res. 13, 1255–67.CrossRefGoogle Scholar
Marchesini, G. & Picci, G. (1969). On the evaluation of the response of nonlinear systems by functional series expansion of forced and free responses. J. Franklin Inst. 288, 469–81.CrossRefGoogle Scholar
Marko, H. (1973). Space distortion and decomposition theory. Kybernetik 13, 132–43.CrossRefGoogle ScholarPubMed
Marmarelis, P. & McCann, G. D. (1973). Development and application of white-noise modeling techniques for studies of insect visual nervous system. Kybernetik 12, 7490.CrossRefGoogle ScholarPubMed
Marmarelis, P. Z. & Naka, K. I. (1974). Identification of multi-input biological systems. IEEE Trans. Bio-Med. 21, 88101.CrossRefGoogle ScholarPubMed
Marr, D. (1975). Early processing of visual information. Artificial Intelligence Laboratory M.I.T. A.I. Memo No. 340.Google Scholar
Martin, P. C. (1968). Measurements and Correlation Functions in Many Body Physics (ed. De, Witt and Balian, ). New York, London, Paris: Gordon and Breach.Google Scholar
McCann, G. D. & Dill, J. C. (1969). Fundamental properties of intensity, form and motion perception in the visual nervous systems of Calliphora and Musca. J. gen. Physiol. 53, 385413.CrossRefGoogle ScholarPubMed
McCann, G. D. & Foster, S. F. (1971). Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik 8, 193203.CrossRefGoogle ScholarPubMed
McCann, G. D. & MacGinitie, G. F. (1965). Optomotor response studies of insect vision. Proc. R. Soc. B 163, 369401.Google ScholarPubMed
McCulloch, W. S. & Pitts, W. H. (1943). A logical calculus of ideas immanent in nervous activity. Bull, math. Biophys. 5, 115–33.CrossRefGoogle Scholar
McIlwain, J. T. (1966). Some evidence concerning the physiological basis of the periphery effect in the cat's retina. Exp. Brain Res. 1, 265–71.CrossRefGoogle ScholarPubMed
Michael, C. R. (1968). Receptive fields of single optic nerve fibers in a manunal with an all-cone retina. II. Directionally sensitive units. J. Neurophysiol. 31, 257–67.CrossRefGoogle Scholar
Mimura, K. (1972). Neural mechanisms subserving directional selectivity of movement in the optic lobe of the fly. J. comp. Physiol. 80, 409–37.CrossRefGoogle Scholar
Minsky, M. & Papert, S. (1969). Perceptrons. Cambridge: MIT Press.Google Scholar
Mittelstaedt, H. (1971). Reafferenzprinzip – Analogie und Kritik. In Vorträge der Erlanger Physiologentagung (ed. Keidel, W. D. and Plattig, K.-H.). Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Montero, V. M. & Brigge, J. F. (1969). Direction of movement as a significant stimulus parameter for some lateral geniculate cells in the rat. Vision Res. 9, 7188.CrossRefGoogle ScholarPubMed
Morasso, P., Bizzi, E. & Dichgans, J. (1973). Adjustment of saccade characteristics during head movements. Exp. Brain Res. 16, 492500.CrossRefGoogle ScholarPubMed
Mulloney, B. (1969). Interneurons in the central nervous system of flies and the start of flight. Z. vergi. Physiol. 64, 243–53.CrossRefGoogle Scholar
Nachtigall, W. & Wilson, D. M. (1967). Neuro-muscular control of dipteran flight. J. exp. Biol. 47, 7797.CrossRefGoogle ScholarPubMed
Nicolis, G. & Prigogine, I. (1971). Fluctuations in nonequilibrium systems. Proc. natn. Acad. Sci., U.S.A. 68, 9, 2102.CrossRefGoogle ScholarPubMed
O'Shea, M. & Fraser, Rowell C. H. (1975). Protection from habituation by lateral inhibition. Nature, 254, 53–4.CrossRefGoogle ScholarPubMed
Palka, J. (1972). Moving movement detectors. Am. Zool. 12, 497505.CrossRefGoogle Scholar
Palm, G. & Poggio, T. (1976). The ‘Volterra’ representation and the Wiener expansion: validity and pitfalls. Submitted to SIAM on Applied Mathematics.Google Scholar
Phelps, R. W. (1974). Effects of interactions of two moving lines on single unit responses in the cats visual cortex. Vision Res. 14, 1371–5.CrossRefGoogle Scholar
Pick, B. (1974 a). Visual flicker induces orientation behavior in the fly Musca. Z. Naturf. 29 c, 310–12.CrossRefGoogle Scholar
Pick, B. (1974 b). Das stationäre Orientierungsverhalten der Fliege Musca. Dissertation Eberhard-Karls-Universität Tübingen.Google Scholar
Pick, B. (1976). Orientation behaviour of the fly implies visual pattern discrimination. Biol. Cybernetics (in print).Google Scholar
Pick, B. & Buchner, E. (1976). Movement-specific wide-angle interactions in the visual system of the fly. Biol. Cybernetics (to be submitted).Google Scholar
Pierantoni, R. (1974). Su un tratto nervoso nel cervello della Mosca. In Atti della prima riunione Scientifica (Camogli, dicembre 1973). Soc. Ital. Biofis. Pura e Applicata, 231–49.Google Scholar
Poggio, T. (1972). Outline of a model of spontaneous fixation by the visual system of flies. In Atti del II Congresso Nazionale di Cibernetica (ed. Baldocchi, M. A.), pp. 141–52. Pisa: Lito Felici.Google Scholar
Poggio, T. (1974). Processing of visual information in flies: from a phenomenological model towards the nervous mechanisms. In Atti della prima riunione Scientifica (Camogli, 1973). Soc. Ital. Biofis. Pura e Applicata, pp. 217–25.Google Scholar
Poggio, T. (1975). Processing of visual information in insects: outline of a theoretical characterization. In Biokybernetik. Band V (ed. Drischel, H. and Dettmar, P.), pp. 235–43. Jena: VEB Gustav Fischer Verlag.Google Scholar
Poggio, T. & Reicharut, W. (1973 a). Considerations on models of movement detection. Kybernetik 13, 223-7.CrossRefGoogle ScholarPubMed
Poggio, T. & Reichardt, W. (1973 b). A theory of the pattern induced flight orientation of the fly Musca domestica. Kybernetik 12, 185203.CrossRefGoogle ScholarPubMed
Poggio, T. & Reichardt, W. (1976). Nonlinear interactions underlying visual orientation behaviour of the fly. Cold Spring Harb. Symp. quant. Biol. 40 (in print).CrossRefGoogle ScholarPubMed
Poggio, T. & Torre, V. (1975). A nonlinear transfer function for some neuron models. In Proc. First Symp. Testing and Identification of Nonlinear Systems, 17–20 03 1975. California Institute of Technology, Pasadena, California (ed. Mccann, G. D. and Marmarelis, P. Z.), pp. 292300.Google Scholar
Reichardt, W. (1957). Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems. Z. Naturf. 12 b, 448–57.CrossRefGoogle Scholar
Reichardt, W. (1961). Autocorrelation; a principle for the evaluation of sensory information by the central nervous system. In Sensory Communication (ed.Rosenblith, W. A.), pp. 303–18. New York: John Wiley.Google Scholar
Reichardt, W. (1965). Quantum sensitivity of light receptors in the compound eye of the fly Musca. Cold Spring Harb. Symp. quant. Biol. 30, 505–15.CrossRefGoogle ScholarPubMed
Reichardt, W. (1969). Movement perception in insects. In Processing of Optical Data by Organisms and Machines (ed. Reichardt, W.), pp. 465–93. London, New York: Academic Press.Google Scholar
Reichardt, W. (1970). The insect eye as a model for analysis of uptake, transduction, and processing of optical data in the nervous system. In The Neurosciences, Second Study Program (ed. Schmitt, F. O.), pp. 494511. New York: Rockefeller University Press.Google Scholar
Reichardt, W. (1973). Musterinduzierte Flugorientierung. VerhaltensVersuche an der Fliege Musca domestica. Naturwissenschaften 60, 122–38.CrossRefGoogle Scholar
Reichardt, W. & Poggio, T. (1975). A theory of pattern induced flight orientation of the fly Musca domestica: II. Biol. Cybernetics 18, 6980.CrossRefGoogle ScholarPubMed
Reichardt, W. & Varjú, D. (1959). Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Z. Naturf. 14 b, 674–89.CrossRefGoogle Scholar
Reichardt, W. & Wenking, H (1969). Optical detection and fixation of objects by fixed flying flies. Naturwissenschaften 56, 424–5.CrossRefGoogle ScholarPubMed
Richards, W. A. (1973). ‘Mechanisms for Stereopsis.’ Presented at the NRP Work Session: The Visual Field: Psychophysics and Neurophysiology.Google Scholar
Richards, W. & Kaufman, L. (1969). ‘Centre-of-gravity’ tendencies for fixation and flow patterns. Perception and Psychophys. (5) 2, 81–4.CrossRefGoogle Scholar
Robinson, D. A. (1973). Models of the saccadic eye movement control system. Kybernetik 14, 7183.CrossRefGoogle ScholarPubMed
Sancho, N. G. F. (1969). Movement equations of a stochastic system with two different random parameters. Int. Jnl Control 9 (1), 83–8.CrossRefGoogle Scholar
Scharstein, H. (1974). Der Mechanismus der Sollwertstellung bei der Kursregelung der roten Waldameise (Formica polyctena). (In preparation.)Google Scholar
Scholes, J. (1969). The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik 6, 149–62.CrossRefGoogle ScholarPubMed
Skorokhod, A. V. (1965). Studies in the Theory of Random Processes. Reading, Mass.: Addison-Wesley.Google Scholar
Smith, W. M. (1972). Feedback: real-time delayed vision of one's own tracking behaviour. Science, N. Y. 176, 939–40.CrossRefGoogle Scholar
ST-Cyr, G. J. & Fender, D. H. (1969). Nonlinearities of the human oculomotor system: gain. Vision Res. 9, 1235–46.CrossRefGoogle ScholarPubMed
Steinmann, B. M., Haddad, G. M., Skavenski, A. A. & Wyman, D. (1973). Miniature eye movement. Science, N.Y. 181, 810–19.CrossRefGoogle Scholar
Stratonovitch, R. L. (1968). Conditional Markov Processes and Application to the Theory of Optimal Control. New York: American Elsevier Publishing Company.Google Scholar
Strausfeld, N. J. (1976 a). Atlas of an insect Brain. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Strausfeld, N. J. (1976 b). Mosaic organization, layers and visual pathways in the insect brain. In Neural Principles in Vision (ed. Zettler, F. and Weiler, R.), in print. Berlin, Heidelberg, New York: Springer- Verlag.Google Scholar
Strausfeld, N. J. & Braitenberg, V. (1970). The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris. Z. vergl. Physiol. 70, 95104.CrossRefGoogle Scholar
Strausfeld, N. J. & Campos-Ortega, J. A. (1973). The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). Brain Res., 59, 97117.CrossRefGoogle ScholarPubMed
Stroke, G. W. (1972). Optical computing. IEEE Spectrum 9, 12, 2441.CrossRefGoogle Scholar
Thom, R. (1972). Stabilité structurelle et morphogenèse. New York: Benjamin.Google Scholar
Thorson, J. (1964). Dynamics of motion perception in the desert locust. Science, N.Y. 145, 6971.CrossRefGoogle ScholarPubMed
Thorson, J. (1966 a, b). Small signal analysis of a visual reflex in the locust: I, II. Kybernetik 3, 4166.CrossRefGoogle Scholar
Tolhurst, D. J. & Movshon, J. A. (1975). Spatial and temporal contrast sensitivity of striate cortical neurons. Nature, 257, 674–5.CrossRefGoogle Scholar
Trujillo-Cenóz, O. (1972). The structural organization of the compound eye in insects. In Handbook of Sensory Physiology, vol. VII/2 (ed. Fuortes, M. G. F.). Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Uesaka, Y. (1975). Analog perceptron: its decomposition and order. Inf. Control 27, 199217.CrossRefGoogle Scholar
Varjü, D. (1959). Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster. Z. Naturf. 14 b, 724–35.CrossRefGoogle Scholar
Varjü, D. (1975). Stationary and dynamic responses during visual edge fixation by walking insects. Nature, 255, 330–2.CrossRefGoogle ScholarPubMed
Varjü, D. & Reichardt, W. (1967). Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II. Z. Naturf. 22b, 1343–51.CrossRefGoogle Scholar
Virsik, R. (1974). Verhaltens-Studie der visuellen Detektion und Fixierung bewegter Objekte durch die Fliege Musca domestica. Dissertation Eberhard-Karls-Universität Tübingen.Google Scholar
Virsik, R. & Reichardt, W. (1974). Tracking of moving objects by the fly Musca domestica. Naturwissenschaften 61, 132–3.CrossRefGoogle Scholar
Virsik, R. & Reichardt, W. (1976). Detection and tracking of moving objects by the fly Musca doinestica. Biol. Cybernetics (in print).Google Scholar
Vogel, G. (1957). Verhaltensphysiologische Untersuchungen über die den Weibchensprung des Stubenfliegen-Männchens (Musca domestica) auslösenden optischen Faktoren. Z. Tierphysiol. 14, 309–23.Google Scholar
Wax, N. (1954). Selected Papers on Noise and Stochastic Processes. New York: Dover.Google Scholar
Wehrhahn, C. (1974). Verhaltensstudie zur musterorientierten Höhenorientierung der Fliege Musca domestica. Dissertation Eberhard-KarlsUniversität Tübingen.Google Scholar
Wehrhahn, C. (1976 a). Evidence for the role of retinal receptors R 7/8 in the orientation behaviour of the fly. Biol. Cybernetics 21, 213–20.CrossRefGoogle Scholar
Wehrhahn, C. (1976 b). Experimental evidence for the role of receptors R 1–6 and R 7–8 in the optomotor and orientation response of Musca. (In preparation.)Google Scholar
Wehrhahn, C. & Poggio, T. (1976). Real-time delayed tracking in flies. Nature, 261, 43–4.CrossRefGoogle ScholarPubMed
Wehrhahn, C. & Reichardt, W. (1973). Visual orientation of the fly Musca domestica towards a horizontal stripe. Naturwissenschaften 60, 122.CrossRefGoogle ScholarPubMed
Wehrhahn, C. & Reichardt, W. (1975). Visually induced height orientation of the fly Musca domestica. Biol. Cybernetics 20, 3750.CrossRefGoogle Scholar
Wilson, D. M. (1968). The nervous control of insect flight and related behaviour. In Advances in Insect Physiology (ed. Beament, J. W. et al. ). New York: Academic Press.Google Scholar
Wilson, J. P. (1974). Psychoacoustical and neurophysiological aspects of auditory pattern recognition. In The Neurosciences, Third Study Program (ed. Schmitt, F. G. and Worden, F. G.). Cambridge: MIT Press.Google Scholar
Wilson, H. R. & Cowan, J. D. (1873). A mathematical theory of the functional dynamics of cortical and thalamic neivous tissue. Kybernetik 13, 5580.CrossRefGoogle Scholar
Winston, P. H. (1975). The Psychology of Computer Vision. New York: McGraw-Hill.Google Scholar
Wong, E. & Zakai, M. (1965). On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3, 213–29.Google Scholar
Wyman, R. J. (1966). Multistable firing pattern among several motoneurons. J. Neurophysiol. 29, 807.CrossRefGoogle Scholar
Yarbus, A. L. (1967). Eye Movements and Vision. New York: Plenum Press.CrossRefGoogle Scholar
Zames, G. D. (1960). Nonlinear operators for system analysis. M.I.T. Res.Lab. Electr. Techa. Report, 370.Google Scholar
Zimmermann, G. (1973). Der Einfluss stehender und bewegter Musteranteile auf die optomotorische Reaktion der Fliege Drosophila. Dissertation Eberhard-Karls-Universität Tübingen.Google Scholar