Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T23:40:07.536Z Has data issue: false hasContentIssue false

Allosteric interpretation of haemoglobin properties

Published online by Cambridge University Press:  17 March 2009

R. G. Shulman
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
J. J Hopfield
Affiliation:
Princeton University, Princeton, New Jersey 08540 and Bell laboratories, Murray Hill, New Jersey 07974
S. Ogawa
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974

Extract

It is our purpose to review recent experiments on haemoglobin in order to discuss them in terms of the two state model of cooperativity. Excellent previous reviews are available of the chemistry of haemoglobin (Antonini & Brunori, 1971; Gibson, 1959b) which are referred to when possible. The plethora of data necessitates that a selection must be made in a review. An intentionally wide range of experiments is selected to exhibit

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, L. (1973). Intermediate structure of normal human haemoglobin: Methaemoglobin in the deoxy quaternary conformation. J. molec. Biol. 79, 495506.CrossRefGoogle ScholarPubMed
Anderson, L. (1975). Structure of deoxy and carbon monoxy haemoglobin Kansas in the deoxy quaternary conformation. J. molec. Biol. 94, 3349.CrossRefGoogle Scholar
Antonini, E. & Brunori, M. (1969). On the rate of a conformation change associated with ligand binding in hemoglobin. J. biol. Chem. 244, 3909–12.CrossRefGoogle ScholarPubMed
Antonini, E. & Brunori, M. (1971). Hemoglobin and Myoglobin in their Reaction with Ligands. Amsterdam: North-Holland Publishing Co..Google Scholar
Antonini, E., Brunori, M., Wyman, J. & Noble, R. W. (1966). Preparation and kinetic properties of intermediates in the reaction of hemoglobin with ligands. J. biol. Chem. 241, 3236–8.CrossRefGoogle ScholarPubMed
Antonini, E., Schuster, T. M. & Wyman, J. (1965). The kinetics of the Bohr effect in the reaction of human hemoglobin with carbon monoxide. J. biol. Chem. 240, 2262–4.CrossRefGoogle ScholarPubMed
Banerjee, R., Stetzkowski, F. & Henry, Y. (1973). Reciprocal effects of changes of subunit structure on ligand equilibria of haemoglobin valence, hybrids. Attempted correlation with electron paramagnetic resonance spectra. J. molec. Biol. 73, 455–67.CrossRefGoogle ScholarPubMed
Benesch, R. E. & Benesch, R. (1962). The influence of oxygenation on the reactivity of -SH group of hemoglobin. Biochemistry, N.Y. 1, 735–8.CrossRefGoogle ScholarPubMed
Benesch, R., & Benesch, R. E., (1967). The effects of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. biophys. Res. Commun. 26, 162–7.CrossRefGoogle ScholarPubMed
Benesch, R., Benesch, R. E., Renthal, R. & Gratzer, W. B. (1971). Cofactor binding and oxygen equilibrium in hemoglobin. Nature, Lond. 234, 174–6.Google Scholar
Benesch, R., Benesch, R. E. & Yu, C. I. (1968). Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc. natn. Acad. Sci. U.S.A.. 59, 526–32.CrossRefGoogle ScholarPubMed
Bonaventura, J., Bonaventura, C., Brunori, M., Giardina, B., Antonini, E., Bossa, F. & Wyman, J. (1974). Functional properties of carboxypeptidase-digested hemoglobins. J. molec. Biol. 82, 499511.CrossRefGoogle ScholarPubMed
Bonaventura, J. & Riggs, A. (1968). Hemoglobin Kansas, a human hemoglobin with a neutral amino acid substitution and an abnormal oxygen equilibrium. J. biol. Chem. 243, 980–91.CrossRefGoogle Scholar
Brunori, M., Amiconi, G., Antonini, E., Wyman, J. & Winterhalter, K. H. (1970). Artificial intermediates in the reaction of haemoglobin. Functional and conformational properties of the cyanomet intermediates. J. molec. Biol. 49, 461–71.CrossRefGoogle Scholar
Brunori, M., Antonini, E., Wyman, J. & Anderson, S. R. (1968). Spectral differences between haemoglobin and isolated haemoglobin chains in the deoxygenated state. J. molec. Biol. 34, 357–9.CrossRefGoogle Scholar
Bucci, E. & Fronticelli, C. (1965). A new method for the preparation of the α and β subunits of human hemoglobin. J. biol. Chem. 240, 551–2.CrossRefGoogle ScholarPubMed
Bunn, H. F. (1970). Dissociation of haemoglobin Chesapeake into subunits. Nature, Lond. 227, 839–40.CrossRefGoogle ScholarPubMed
Bunn, H. F. & Guidotti, G. (1972). Stabilizing interactions in hemoglobin. J. biol. Chem. 247, 2345–50.CrossRefGoogle ScholarPubMed
Caldwell, P. R. B. & Nagel, R. L. (1973). The binding of 2,3-diphosphoglycerate as a conformational probe of human hemoglobins. J. molec. Biol. 74, 605–11.CrossRefGoogle Scholar
Cassoly, R. & Gibson, Q. H. (1972). The kinetics of ligand binding to hemoglobin valency hybrids and the effect of anions. J. biol. Chem. 247, 7332–41.CrossRefGoogle ScholarPubMed
Cassoly, R., Gibson, Q. H., Ogawa, S. & Shulman, R. G. (1971). Effects of phosphate upon CO binding kinetics and NMR spectra of hemoglobin valency hybrids. Biochem. biophys. Res. Commun. 44, 1015–21.CrossRefGoogle ScholarPubMed
Charache, S., Weatherall, D. J. & Clegg, J. B. (1966). Polycythemia associated with a hemoglobin-opathy. J. clin. Invest. 45, 813–22.CrossRefGoogle Scholar
Davis, D. G., Mock, N. H., Lindstrom, T. R., Charache, S. & Ho, C. (1970). Nuclear magnetic studies of hemoglobin. V. The heme proton spectra of human deoxyhemoglobins A, F, Zurich and Chesapeake. Biochem. biophys. Res. Commun. 40, 343–9.CrossRefGoogle Scholar
De, Bruin S. H., Janssen, L. H. M. & Van, Os G. A. J. (1973). The interaction of 2, 3-diphosphoglycerate on human deoxy and oxyhemoglobin. Biochem. biophys. Res. Commun. 55, 193–9.Google Scholar
Edelstein, S. J. (1971). Extensions of the allosteric model for haemoglobin. Nature, Lond. 230, 224–7.CrossRefGoogle ScholarPubMed
Epstein, H. F. & Stryer, L. (1968). Kinetics of azide binding to normal and mutant ferrihemoglobin as evidence for subunit interaction. J. molec.Biol. 32, 113–20.CrossRefGoogle Scholar
Geraci, G., Parkhurst, L. J. & Gibson, Q. H. (1969). Preparation and properties of α - and β-chains from human hemoglobin. J. biol. Chem. 249, 4664–7.CrossRefGoogle Scholar
Gibson, Q. H. (1959 a). The photochemical formation of a quickly reacting form of haemoglobin. Biochem. J. 71, 293303.CrossRefGoogle ScholarPubMed
Gibson, Q. H. (1959 b). The kinetics of reactions between haemoglobin and gases. Prog. Biophys. biophys. Chem. 9, 153.CrossRefGoogle Scholar
Gibson, Q. H. (1973). The contribution of the α and β chains to the kinetics of oxygen binding to and dissociation from hemoglobin. Proc. natn. Acad. Sci. U.S.A. 70, 14.CrossRefGoogle Scholar
Gibson, Q. H., Heller, P. & Yakulis, V. (1966). The rate of reaction of carbon monoxide with hemoglobins M. J. biol. Chem. 241, 1650–1.CrossRefGoogle ScholarPubMed
Gibson, Q. H. & Nagel, R. L. (1974). Allosteric transition and ligand binding in hemoglobin Chesapeake. J. biol. Chem. 249, 7255–9.CrossRefGoogle ScholarPubMed
Gibson, Q. H., Riggs, A. & Imamura, T. (1973). Kinetics and equilibrium properties of hemoglobin Kansas. J. biol. Chem. 248, 5976–86.CrossRefGoogle ScholarPubMed
Gibson, Q. H. & Roughton, F. J. W. (1955). The kinetics of dissociation of the first oxygen molecule from fully saturated oxyhaemoglobin in sheep blood solutions. Proc. R. Soc. Lond. B 143, 310–34.Google ScholarPubMed
Gibson, Q. H. & Roughton, F. J. W.The kinetics of dissociation of the first ligand molecule from fully saturated carbonmonoxy haemoglobin and nitric oxide haemoglobin in sheep blood solution. Proc. R. Soc. Lond. B 147, 4456.Google Scholar
Gray, R. D. (1970). The kinetics of the Alkaline Bohr effect of human hemoglobin. J. biol. Chem. 245, 2914–21.CrossRefGoogle ScholarPubMed
Gray, R. D. & Gibson, Q. H. (1971). The effect of inositol hexaphosphate on the kinetics of CO and O2 binding of human hemoglobin. J. biol. Chem. 246, 7168–74.CrossRefGoogle ScholarPubMed
Greer, J. (1971 a). Three-dimensional structure of abnormal human haemoglobins Kansas and Richmond. J. molec. Biol. 59, 99105.CrossRefGoogle ScholarPubMed
Greer, J. (1971 b). Three-dimensional structure of abnormal human haemoglobins M Hyde Park and M Iwate. J. molec. Biol. 59, 107–26.CrossRefGoogle Scholar
Greer, J. (1971 c). Three-dimensional structure of abnormal human haemoglobins Chesapeake and J Capetown. J. molec. Biol. 62, 241–9.CrossRefGoogle ScholarPubMed
Guidotti, G. (1967). Studies on the chemistry of hemoglobin. J. biol. Chem. 242, 3685–93.CrossRefGoogle ScholarPubMed
Haber, J. E. & Koshland, D. E. (1969). Evidence for β-β interactions during the binding of oxygen to hemoglobin. Biochem. biophys. Acta 194, 339–41.Google ScholarPubMed
Haber, J. E. & Koshland, D. E. (1971). Effect of 2,3-diphosphoglyceric acid on the changes in β-β interactions in hemoglobin during oxygenation. J. biol. Chem. 246, 7790–3.CrossRefGoogle Scholar
Hayashi, A., Suzuki, T., Imai, K., Morimoto, H. & Watari, H. (1969). Properties of hemoglobin M Milwaukee-I variant and its unique characteristic. Biochim. biophys. Acta 194, 615.CrossRefGoogle ScholarPubMed
Hayashi, A., Suzuki, T., Shimizu, A., Imai, K., Morimoto, H., Miyaji, T. & Shibata, S. (1968). Some observations on the physicochemical properties of hemoglobin M Hyde Park.Archs Biochem. Biophys. 125, 895901.CrossRefGoogle ScholarPubMed
Hayashi, N., Motokawa, Y., &Kikuchi, G.(1966). Studies on relationships between structure and function of hemoglobin M Iwate. J. biol. Chem. 241, 7984.CrossRefGoogle ScholarPubMed
Henry, Y. & Banerjee, R. (1973). Electron paramagnetic resonance studies of nitric oxide haemoglobin derivaties. J. molec. Biol. 73, 469–82.CrossRefGoogle Scholar
Hewitt, J. A. & Gibson, Q. H. (1973). Ligand binding kinetics of des arginine haemoglobin. J. molec. Biol. 74, 489–98.CrossRefGoogle ScholarPubMed
Hewitt, J. A., Kilmartin, J. V., TenEyck, L. F. Eyck, L. F. & Perutz, M. F. (1972). Noncooperativity of the αβ dimer in the reaction of hemoglobin with oxygen. Proc. natn. Acad. Sci. U.S.A. 69, 203–7.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1973). The relation between structure, cooperativity, and spectra in a model of hemoglobin action. J. molec. Biol. 77, 207–22.CrossRefGoogle Scholar
Hopfield, J. J., Ogawa, S. & Shulman, R. G. (1972). The rate of carbon monoxide binding to hemoglobin Kansas. Biochem. biophys. Res. Commun. 49, 1480–4.CrossRefGoogle ScholarPubMed
Hopfield, J. J. & Shulman, R. G. (1973). Discussion. Ann. N.Y. Acad. Sci. 222, 65–7.Google Scholar
Hopfield, J. J., Shulman, R. G. & Ogawa, S. (1971). An allosteric model of hemoglobin. I. Kinetics. J. molec. Biol. 61, 425–43.CrossRefGoogle ScholarPubMed
Huestis, W. H. & Raftery, M. A. (1972 a). 31P-NMR studies of the release of diphosphoglyceric acid on carbon monoxide binding to hemoglobin. Biochem. biophys. Res. Commun. 49, 428–33.CrossRefGoogle Scholar
Huestis, W. H. & Raftery, M. A. (1972 b). A study of cooperative interactions in hemoglobin. Biochemistry, N.Y. 11, 1648–54.CrossRefGoogle ScholarPubMed
Huestis, W. H. & Raftery, M. A. (1973). Conformation and cooperativity in hemoglobin. Biochemistry, N.Y. 12, 2531–5.CrossRefGoogle Scholar
Imai, K. (1973). Analysis of oxygen equilibria of native and chemically modified human adult hemoglobins on the basis of Adair's stepwise oxygenation theory and the allosteric model of Monod, Wyman and Changeux. Biochemistry, N.Y. 12, 798808.CrossRefGoogle ScholarPubMed
Imai, K., Morimoto, H., Kotani, M., Watari, H., Hirata, W. & Kuroda, M. (1970). Studies on the function of abnormal hemoglobins. I. Biochim. biophys. Acta 200, 189–96.CrossRefGoogle ScholarPubMed
Johnson, M. E. & Ho, C. (1974). Effects of ligands and organic phosphates on functional properties of human adult hemoglobin. Biochemistry, N.Y. 13, 3653–61.CrossRefGoogle ScholarPubMed
Kellett, G. L. (1971). Dissociation of hemoglobin into subunits. J. molec. Biol. 59, 401–24.CrossRefGoogle ScholarPubMed
Kilmartin, J. V. & Hewitt, J. A. (1971). The effect of removal of C-terminal résidues on cooperative interactions in hemoglobin. Cold Spring Harb. Symp. quant. Biol. 36, 311–14.CrossRefGoogle Scholar
Kosfiland, D. E.Nemethy, G. & Filmer, D. (1966). Comparison of ex-perimental binding data and theoretical models in proteins containing subunits. Biochemistry, N.Y. 5, 365–85.CrossRefGoogle Scholar
Lindstrom, T. R., Baldassare, J. J., Bunn, H. F. & Ho, C. (1973). Nuclear magnetic resonance and spin-label studies of hemoglobin Kempsey. Biochemistry, N.Y. 12 4212–17.CrossRefGoogle ScholarPubMed
Lindstrom, T. R. & Ho, C. (1972). Functional nonequivalence of α and β hemes in human adult hemoglobin. Proc. natn. Acad. Sci. U.S.A. 69, 1707–10.CrossRefGoogle ScholarPubMed
Lindstrom, T. R. & Ho, C. (1973). Effects of anions and ligands on the tertiary structure around ligand binding site in human adult hemoglobin. Biochemistry 12, 134139.CrossRefGoogle ScholarPubMed
Lindstrom, T. R., Ho, C. & Pisciotta, A. V. (1972 b). Nuclear magnetic resonance studies of haemoglobin M Milwaukee. Nature, Lond. 237, 263–4.Google ScholarPubMed
Lindstrom, T. R., Noren, L. B. E., Charache, S., Lehman, H. & Ho, C. (1972 a). Nuclear magnetic resonance studies of hemoglobins. VII. Tertiary structure around ligand binding site in carbonmonoxy hemoglobin. Biochemistry, N. Y. 11, 1677–81.CrossRefGoogle Scholar
Lindstrom, T. R., Olson, J. S., Mock, N. H., Gibson, Q. H. & Ho, C. (1971). Nuclear magnetic resonance studies of hemoglobins. VIII. Evidence for preferential ligand binding to β chains within deoxyhemoglobins. Biochem. biophys. Res. Commun. 45, 22–6.CrossRefGoogle Scholar
Maeda, T., Imai, K. & Tyuma, I. (1972). Effects of 2,3-diphosphoglycerate on the oxygen equilibria of the half-cyanomet hybrid hemoglobins. Biochemistry, N.Y. 11, 3685–9.CrossRefGoogle Scholar
Maeda, T. & Ohnishi, S. (1971). Kinetic evidence for propagation of conformational changes in the α subunit to the β subunit of hemoglobin. Biochemistry, N. Y. 10, 1177-80.Google Scholar
Mayer, A., Ogawa, S., Shulman, R. G. & Gersonde, K. (1973). High-resolution proton nuclear magnetic resonance studies of the quaternary state of hemoglobin M Iwate. J. molec. Biol. 81, 187–97.CrossRefGoogle ScholarPubMed
Minton, A. P. & Imai, K. (1974). The three-state model: A minimal allosteric description of homotropic and heterotropic effects in binding ligands to hemoglobin. Proc. natn. Acad. Sci. U.S.A. 71, 1418–21.CrossRefGoogle Scholar
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: A plausible model. J. molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Morimoto, H., Lehman, H. & Perutz, M. F. (1971). Molecular pathology of human haemoglobin: Stereochemical interpretation of abnormal oxygen affinities. Nature, Lond. 232, 408-13.CrossRefGoogle ScholarPubMed
Murirhead, H. & Perutz, M. F. (1963). Structure of haemoglobin. Nature, Lond. 199, 633–8.Google Scholar
Nagai, M., Sugita, Y. & Yoneyama, Y. (1972). Oxygen equilibrium and circular dichroism of hemoglobin-Rainier (α2β2145 Tyr → Cys). J biochem. Chem. 247, 285–90.Google Scholar
Nagel, R. L., Gibson, Q. H., Charache, S. (1967). Relation between structure and function in hemoglobin Chesapeake. Biochemistry, N. Y. 6, 2395–402.CrossRefGoogle ScholarPubMed
Ogata, R. T. & McConnell, H. M. (1971). The binding of a spin-labeled triphosphate to hemoglobin. Cold Spring Harb. Symp. quant. Biol. 36, 325–36.CrossRefGoogle Scholar
Ogata, R. T. & McConnell, H. M. (1972). Mechanism of cooperative oxygen binding to hemoglobin. Proc. natn. Acad. Sci. U.S.A. 69, 335–9.CrossRefGoogle ScholarPubMed
Ogawa, S. & McConnell, H. M. (1967). Spin-label study of hemoglobin conformation in solution. Proc. natn. Acad. Sci. U.S.A. 58, 1926.CrossRefGoogle Scholar
Ogawa, S., McConnell, H. M. & Horwitz, A. (1968). Overlapping conformation changes in spin-labeled hemoglobin. Proc. natn. Acad. Sci. U.S.A. 61, 401–5.CrossRefGoogle ScholarPubMed
Ogawa, S., Mayer, A. & Shulman, R. G. (1972 b). High resolution proton nuclear magnetic resonance study of the two quaternary states in fully ligated hemoglobin Kansas. Biochem. biophys. Res. Commun. 49, 1485–91.CrossRefGoogle ScholarPubMed
Ogawa, S., Patel, D. J. & Simon, S. R. (1974). Proton magnetic resonance study of the switch between the two quaternary structures in high- affinity hemoglobins in the deoxy state. Biochemistry, N.Y. 13, 2001–6.CrossRefGoogle ScholarPubMed
Ogawa, S. & Shulman, R. G. (1971). Observation of allosteric transition in hemoglobin. Biochem. biophys. Res. Commun. 42, 915.CrossRefGoogle ScholarPubMed
Ogawa, S. & Shulman, R. G. (1972). High resolution nuclear magnetic resonance spectra of hemoglobin. III. The half-ligated state and allosteric interactions. J. molec. Biol. 70, 315–36.CrossRefGoogle Scholar
Ogawa, S., Shulman, R. G., Fujiwara, M. & Yamane, T. (1972 a). High resolution nuclear magnetic resonance spectra of hemoglobin. II. Ligated tetramers. J. molec. Biol. 70, 301–13.CrossRefGoogle ScholarPubMed
Patel, D. J., Kampa, L., Shulman, R. G., Yamane, T. & Fujiwara, M. (1970). Proton NMR studies of hemoglobin in H2O. Biochem. biophys. Res. Commun. 40, 12241230.CrossRefGoogle ScholarPubMed
Peisach, J., Blumberg, W. E., Ogawa, S., Rachmilewitz, E. A. & Oltzik, R. (1971). The effects of protein conformation on the heme symmetry in high spin ferric heme proteins as studied by electron paramagnetic resonance. J. biol. Chem. 246, 3342–55.CrossRefGoogle ScholarPubMed
Perutz, M. F. (1970). Stereochemistry of cooperative effects in haemoglobin. Nature, Lond. 228, 726–39.CrossRefGoogle ScholarPubMed
Perutz, M. F. (1972). Nature of haem-haem interaction. Nature, 237, 495–9.CrossRefGoogle ScholarPubMed
Perutz, M. F., Fersht, A. R., Simon, S. R. & Roberts, G. C. K. (1974 b). Influence of globin structure on the state of heme. II. Allosteric transitions in methemoglobin. Biochemistry, N.Y. 13, 2174–86.CrossRefGoogle ScholarPubMed
Perutz, M. F., Heidner, E. J., Ladner, J. E., Beetlestone, J. G., Ho, C. & Slade, E. F. (1974 c). Influence of globin structure on the state of the heme. III. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction. Biochemistry, N.Y. 13, 2187–200.CrossRefGoogle Scholar
Perutz, M. F., Ladner, J. E., Simon, S. R. & Ho, C. (1974 a). Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin. Biochemistry, N.Y. 13, 2163–73.CrossRefGoogle ScholarPubMed
Perutz, M. F. & Lehman, H. (1968). Molecular pathology of human haemoglobin. Nature, Lond. 219, 902–9.CrossRefGoogle ScholarPubMed
Perutz, M. F. & Mazzarella, L. (1963). A preliminary X-ray analysis of haemoglobin H.. Nature, Lond. 199, 639.CrossRefGoogle ScholarPubMed
Perutz, M. F., Muirhead, H., Cox, J. M. & Goaman, L. C. G. (1968). Three-dimensional Fourier synthesis of horse oxyhemoglobin at 2·8 Å resolution. II. The atomic model. Nature, Lond. 219, 131–9.CrossRefGoogle Scholar
Perutz, M. F., Pulsinelli, P. D. & Ranney, H. M. (1972). Structure and subunit interaction of haemoglobin M Milwaukee. Nature, Lond. 237, 259–63.Google ScholarPubMed
Perutz, M. F. & Ten, Eyck L. F. (1971). Stereochemistry of cooperative effects in hemoglobin. Cold Spring Harb Symp. quant. Biol. 36, 295310.CrossRefGoogle Scholar
Pulsinelli, P. D., Perutz, M. F. & Nagel, R. L. (1973). Structure of hemoglobin M Boston, a variant with a five coordinated ferric heme. Proc. natn. Acad. Sci. U.S.A. 70, 3870–4.CrossRefGoogle ScholarPubMed
Ranney, H. M., Nagel, R. L., Heller, P. & Udem, L. (1968). Oxygen equilibrium of hemoglobin M Hyde Park. Biochim. biophys. Acta 160, 112–15.CrossRefGoogle ScholarPubMed
Reissmann, K. R., Ruth, W. E. & Nomura, T. (1961). Human hemoglobin with lowered oxygen affinity and impaired heme-heme interaction. J. clin. Invest. 40, 1826.CrossRefGoogle Scholar
Riggs, A. (1961). The binding of N-ethylmaleimide by human hemoglobin and its effect upon the oxygen equilibrium. J. biol. Chem. 236, 1948–54.CrossRefGoogle ScholarPubMed
Riggs, A. (1971). Mechanism of the enhancement of the Bohr Effect in mammalian hemoglobins by diphosphoglycerate. Proc. natn. Acad. Sci. U.S.A. 68, 2062–5.CrossRefGoogle ScholarPubMed
Roughton, F. J. W. & Lyster, R. L. J. (1965). Some combination of the Scholander-Roughton syringe capillary and van Slyke's gasometric techniques, and their use in special haemoglobin problems. Hvalradets Skr 48, 185–98.Google Scholar
Rubin, M. M. & Changeux, J.-P. (1966). On the nature of allosteric transitions: Implications of non-exclusive ligand binding. J. molec. Biol. 21, 265–74.CrossRefGoogle ScholarPubMed
Salhany, J. M. (1972). The deoxygenation kinetics of hemoglobin Rainier. Biochem. biophys. Res. Commun. 47, 784–9.CrossRefGoogle ScholarPubMed
Salhany, J. M. & Eliot, R. S. & Mizukami, H. (1970). The effects of 2,3- diphosphoglycerate on the kinetics of deoxygenation of human hemoglobin. Biochem. biophys. Res. Commun. 39, 1052–7.CrossRefGoogle Scholar
Salhany, J. M., Ogawa, S. & Shulman, R. G. (1974). Spectral-kinetic heterogeneity in reactions of nitrosyl hemoglobin. Proc. natn. Acad. Sci. U.S.A. 71, 3359–62.CrossRefGoogle ScholarPubMed
Salhany, J. M., Ogawa, S. & Shulman, R. G. (1975). Correlation between quaternary structure and ligand dissociation kinetics for fully liganded hemoglobin. Biochemistry, N.Y. 14, 2180–90.CrossRefGoogle ScholarPubMed
Schuster, T. M. & Ilgenfritz, G. (1969) Proc. Nobel Symposium 11th, Symmetry and Function of Biological Systems at Macromolecular Level (ed. Engstrom, A. and Strandberg, B.), pp. 181211.Google Scholar
Shulman, R. G., Ogawa, S. & Hopfield, J. J. (1972). An allosteric model of hemoglobin. II. The assumption of independent binding. Archs Biochem. Biophys 151, 6874.CrossRefGoogle ScholarPubMed
Shulman, R. G., Ogawa, S., Mayer, A. & Castillo, C. L. (1973). High-resolution proton NMR studies of low affinity hemoglobins. Ann. N. Y. Acad. Sci. 222, 920.CrossRefGoogle ScholarPubMed
Shulman, R. G., Ogawa, S., Wuthrich, K., Yamane, T., Peisach, J. & Blumberg, W. E. (1969). The absence of ‘heme-heme’ interactions in hemoglobin. Science, N.Y. 165, 251–7.CrossRefGoogle ScholarPubMed
Simon, S. R. & Cantor, C. R. (1969). Measurement of ligand-induced conformational changes in hemoglobin by circular dichroism. Proc. natn. Acad. Sci. U.S.A. 63, 205–12.CrossRefGoogle ScholarPubMed
Sugita, Y. (1975). Differences in spectra of α and β chains of hemoglobin. J. biol. Chem. (in the Press).Google Scholar
Suzuki, T., Hayashi, A., Shimizu, A. & Yamamura, Y. (1966). The oxygen equilibrium of hemoglobin M Saskatoon. Biochim. biophys. Acta 127, 280–2.CrossRefGoogle Scholar
Suzuki, T., Hayashi, A., Yamamura, Y., Enoki, Y. & Tyuma, I. (1965). Functional abnormality of hemoglobin M Osaka. Biochem. biophys. Res. Commun. 19, 691–5.CrossRefGoogle ScholarPubMed
Thomas, J. O. & Edelstein, S. J. (1972). Observation of the dissociation of unliganded hemoglobin. J. biol. Chem. 247, 7870–4.CrossRefGoogle ScholarPubMed
Thomas, J. O. & Edelstein, S. J. (1973). Observation of the dissociation of unliganded hemoglobin. J. biol. Chem. 248, 2901–5.CrossRefGoogle ScholarPubMed
Tomita, S. & Riggs, A. (1971). Interaction of 2,3-diphospoglycerate and carbon dioxide with hemoglobin from mouse, man and elephant. J. biol. Chem. 246, 547–54.CrossRefGoogle ScholarPubMed
Topp, W. (1973). Ph.D. Thesis, Princeton University.Google Scholar
Tyuma, I., Imai, K. & Shimizu, K. (1973). Analysis of oxygen equilibrium of hemoglobin and control mechanism of organic phosphates. Biochemistry, N.Y. 12, 1491–8.CrossRefGoogle ScholarPubMed
Udem, L., Ranney, H. M., Bunn, H. F. & Pisciotta, A. (1970). Some observations on the properties of hemoglobin M Milwaukee-i. J. molec. Biol. 48, 489–98.CrossRefGoogle Scholar
Wiechelman, K. J., Charache, S. & Ho, C. (1974). Nuclear magnetic resonance studies of hemoglobin Chesapeake: An α1β2 Mutant. Biochemistry, N.Y. 13, 4772.-7.CrossRefGoogle ScholarPubMed
Wyman, J. (1948). Linked functions and reciprocal effects in hemoglobin: A second look. Adv. Protein Chem. 4, 407531 (ed. Anson, M. L. and Edsall, J. T.).CrossRefGoogle Scholar
Wyman, J. (1967). Allosteric linkage. J. Am. Chem. Soc. 89, 2202–18.CrossRefGoogle Scholar
Wyman, J. (1968). Heme proteins. Adv. Protein Chem. 4, 407531.CrossRefGoogle Scholar