Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T08:34:58.349Z Has data issue: false hasContentIssue false

The application of fluorescent probes in membrane studies

Published online by Cambridge University Press:  17 March 2009

Angelo Azzi
Affiliation:
Istituto di Patologia generale e Centro per lo Studio della Fisiologia dei Mitochondri, Università di Padova, 35100 Padova, Italy

Extract

Fluorescence has been used in biochemical studies for many years but only recently has the information content and the practical applicability of the fluorescence method been fully realized.

Following the early studies of Newton (1954) and Weber (11954) and after the initial utilization of fluorescent probes by Chance and coworkers (Azzi et al. 1969) and Tasaki et al. (1968), in the study of membranes, the use of fluorescence to provide structural information at microscopic or molecular levels in biological membranes has become widespread. widespread. The application of the fluorescence technique to biological systems has progressed parallel to the development of a theoretical basis for fluorescence data interpretation and the synthesis of a large number of fluorescent probes, organic molecules having fluorescence characteristics that are dependent on their environment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Augustin, J. & Hasselbach, W. (1973 a). Studies on the fluorescence of 1-anilino-8-naphthalenesulfonate by the membranes of the sarcoplasmic reticulum. Eur. J. Biochem. 35, 114–21.CrossRefGoogle ScholarPubMed
Augustin, J. & Hasselbach, W. (1973 b). Changes of the fluorescence of 1-anilino-8-naphthalenesulfonate, associated with the membranes of the sarcoplasmic reticulum, induced by general anesthetics. Eur. J. Biochem. 39, 7584.CrossRefGoogle ScholarPubMed
Avi-Dor, Y., Utsumi, K. & Packer, L. (1970). Quantitation of the energetic state in mitochondria and submitochondrial vesicles with 8-anilino-1- naphthalene sulfonic acid. Bioenergetics 1, 511–22.CrossRefGoogle Scholar
Azzi, A. (1969 a). Redistribution of the electrical charge of the mitochondrial membrane during energy conservation. Biochem. biophys. Res. Commun. 37, 254260.CrossRefGoogle ScholarPubMed
Azzi, A. (1969 b). Energy dependent structure changes in membranes. Fedn Proc. Fedn Am. Socs exp. Biol. 28, 663.Google Scholar
Azzi, A. (1974). The use of fluorescent probes for the study of membranes. In Methods Enzym. 32 (in the Press).CrossRefGoogle Scholar
Azzi, A., Baltscheffsky, M., Baltscheffsky, H. & Vainio, H. (1971 a). Energy-linked changes of the membrane of Rhodospirillum rubrum chromatophores detected by the fluorescent probe 8-anilinonaphthalene-i-sulfonic acid. FEBS Lett. 17, 4952.CrossRefGoogle ScholarPubMed
Azzi, A., Bragadin, M., Layton, D., Graziotti, P. & Luciani, S. (1974). Site-directed probes for membranes paramagnetic and fluorescent labels of bound ATPase. In Dynamics of Energy-Transducing Membranes (ed. Ernster, L., Estabrook, R. W. and Slater, E. C.). Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
Azzi, A., Chance, B., Radda, G. K. & Lee, C. P. (1969). A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc. natn. Acad. Sci. U.S.A. 62, 612–19.Google Scholar
Azzi, A., Fabbro, A., Santato, M. & Gherardini, P. L. (1971 b). Energy transduction in mitochondrial fragments. Interaction of the membranes with acridine dyes. Eur. J. Biochem. 21, 404–10.CrossRefGoogle ScholarPubMed
Azzi, A., Gherardini, P. L. & Santato, M. (1971 c). Fluorochrome interaction with the mitochondrial membrane. The effect of energy conservation. J. blot. Chem. 246, 2035–42.Google Scholar
Azzi, A., Gherardini, P. L. & Santato, M. (1971 d). Probe studies of the energy conservation mechanism in mitochondria and mitochondrial fragments. In Energy Transduction in Respiration and Photosynthesis I. U.B. Symposium Series, 43 (ed. Quagliariello, E., Papa, S. and Rossi, C. S.), pp. 621–36. Bari: Adriatica Editrice.Google Scholar
Azzi, A. & Santato, M. (1970). Potential changes and conformational changes in the mitochondrial membrane. Fedn Proc. Fedn Am. Socs exp. Blot. 20, 773.Google Scholar
Azzi, A. & Santato, M. (1971). Interaction of ethidium with the mitochondrial membrane: cooperative binding and energy-linked changes. Biochem. biophys. Res. Commun. 44, 211–17.CrossRefGoogle ScholarPubMed
Azzi, A. & Santato, M. (1972 a). On the interpretation of energy-linked 1-anilinonaphthalene-8-sulfonate fluorescence changes in mitochondrial fragments. FEBS Lett. 27, 35–8.Google Scholar
Azzi, A. & Santato, M. (1972 b). Interaction of anionic and cationic probes with mitochondria: membrane charge and energy conservation. In Biochemistry and Biophysics of Mitochondrial Membranes, pp. 361–76. New York, London: Academic Press.Google Scholar
Azzi, A. & Vainio, H. (1970). Charge distribution and energy conservation in mitochondrial membranes. In Electron Transport and Energy Conservation (ed. Tager, J. M., Papa, S., Quaglianiello, E. and Slater, E. C.), pp. 540–7. Bari: Adriatica Editrice.Google Scholar
Azzi, A. & Vainio, H. (1971). State changes of the mitochondrial membrane as detected by the fluorescence probe 1-nilino-8-naphthalene sulfonic acid. In Probes of Structure and Function of Macromolecules and Membranes (ed. Chance, B., Chuan-pu-Lee, and Blasie, J. K.), pp. 209–18. New York, London: Academic Press.CrossRefGoogle Scholar
Azzone, G. F. & Massari, S. (1973). Active transport and binding in mitochondria. Biochim. biophys. Acta 301, 195226.CrossRefGoogle ScholarPubMed
Badley, R. A., Martin, W. G. & Schneider, H. (1973). Dynamic behaviour of fluorescent probes in lipid bilayer model membranes. Biochemistry, N. Y. 12, 268–75.CrossRefGoogle ScholarPubMed
Badley, R. A., Schneider, H. & Martin, W. G. (1972). The fluorescence behaviour of 1-anilino-8-naphthalene sulphonate in phospholipid and natural membranes. Biochem. biophys. Res. Commun. 49, 1292–9.Google Scholar
Bakker, E. P. & Van, Dam K. (1974). The influence of diffusion potentials across liposomal membranes on the fluorescence intensity of 1-anilinonaphthalene-8-sulphonate. Biochem. biophys. Acta 339, 157–63.Google Scholar
Ballard, S. G., Barker, R. W., Barrett, Bee K. J., Dwek, R. A., Radda, G. K., Smith, D. S. & Taylor, J. A. (1972). The location and response of probes in membranes. In Biochemistry and Biophysics of Mitochondrial Membranes (ed. Carafoli, E., Quagliariello, E., Azzone, G. F., Lehninger, A. L. and Siliprandi, N.), pp. 257–75. New York, London: Academic Press.Google Scholar
Barrett, Bee K. & Radda, G. K. (1972). On the nature of the energy- linked quantum yield change in anilino-naphthalene sulphonate fluorescence in submitochondrial particles. Biochim. biophys. Acta 267, 211–15.CrossRefGoogle Scholar
Berden, J. A. & Slater, E. C. (1972). The allosteric binding of antimycin to cytochrome b in the mitochondrial membrane. Biochim. biophys. Acta 256, 199215.Google Scholar
Berden, R. M., Schrier, P. I. & Slater, E. C. (1973). The binding of aurovertin to mitochondria, and its effect on mitochondrial respiration. Biochim. biophys. Acta 305, 503–18.Google Scholar
Bessette, F. & Seufert, W. D. (1973). Fluorescence coupling across lipid bilayer membranes. Biophysik 9, 325–34.CrossRefGoogle ScholarPubMed
Bhaumik, M. L. & Hardwick, R. (1963). Lattice work performed by excited molecules. J. chem. Phys. 39, 1595–8.CrossRefGoogle Scholar
Brand, L. & Gohlke, J. R. (1972). Fluorescence probes for structure. A. Rev. Biochem. 41, 843–68.Google Scholar
Brand, L. & Witholt, W. (1967). Fluorescence measurements. Methods Enzymol. 11, pp. 776856.Google Scholar
Brand, L., Seliskar, C. J. & Turner, D. C. (1971). In Probes of Structure and Function of Macromolecules and Membranes (ed. Chance, B., Lee, C. P. and Blasie, J. K.), pp. 1731. New York, London: Academic Press.CrossRefGoogle Scholar
Brocklehurst, J. R., Cierkosz, B. I. T. & Lee, C. P. (1973). Fluorescent labelling of the mitochondrial inner membrane. Biochim. biophys. Acta 314, 136–48.Google Scholar
Brocklehurst, J. R., Freedman, R. B., Hancock, D. J. & Radda, G. K. (1970). Membrane studies with polarity-dependent and excimer-forming fluorescent probes. Biochem. J. 116, 721–31.Google Scholar
Brooker, L. G. S., Keyes, G. H., Sprague, R. H., Van, DYKE R. H., Van, Lare E., Van, Zandt G., White, F. L., Cressman, H. W. J. & Dent, S. G. Jr (1951). Color and constitution. X. Absorption of the merocyanines. J. Am. chem. Soc. 73, 5332–50.CrossRefGoogle Scholar
Brown, P. K. (1972). Rhodopsin rotates in the visual receptor membrane. Nature New Biol. Lond. 236, 35–8.CrossRefGoogle ScholarPubMed
Bücher, H., Wiegand, J., Snavely, B. B., Beck, K. H. & Kuhn, H. (1969). Electric field induced changes in the optical absorption of a merocyanine dye. Chein. Phys. Letters 3, 508–11.CrossRefGoogle Scholar
Butler, K. W., Dugas, H., Smith, I. C. P. & Schneider, H. (1970). Cationinduced organization changes in a lipid bilayer model membrane. Biochem. biophys. Res. Commun. 40, 7706.CrossRefGoogle Scholar
Carnay, L. D. & Barry, W. H. (1969). Turbidity, birefringence and fluores cence changes in skeletal muscle coincident with the action potential. Science, N.Y. 165, 608–9.CrossRefGoogle Scholar
Carnay, L. D. & Tasaki, I. (1971). Ion exchange properties and excitability of the squid giant axon. In Biophysics and Physiology of Excitable Membranes (ed. Adelman, W. I.), pp. 379422. New York: Van Nostrand ReinholdGoogle Scholar
Case, G. D., Vanderkooi, J. M. & Scarpa, A. (1974). Physical properties of biological membranes determined by the fluorescence of the calcium ionophore A23187. Archs Biochim. Biophys. 162, 174–85.Google Scholar
Caswell, A. H. & Hutchison, J. D. (1971 a). Visualization of membrane bound cations by a fluorescent technique. Biochem. biophys. Res. Commun. 42, 43–9.CrossRefGoogle ScholarPubMed
Caswell, A. H. & Hutchison, J. D. (1971 b). Selectivity of cation chelation to tetracyclines: evidence for special conformation of calcium chelate. Biochem. biophys. Res. Commun. 43, 625–30.CrossRefGoogle ScholarPubMed
Caswell, A. H. & Pressman, B. C. (1972). Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles induced by ionophores. Biochem. biophys. Res. Commun. 49, 292–8.CrossRefGoogle ScholarPubMed
Chance, B. (1970). Fluorescent probe environment and the structural and charge changes in energy coupling of mitochondrial membranes. Proc. natn. Acad. Sci. U.S.A. 67, 560–71.Google Scholar
Chance, B. (1972). The nature of electron transfer and energy coupling reactions. FEBS Lett. 23, 320.Google Scholar
Chance, B. (1973 a). Deep and shallow probes on natural and artificial membranes. Proc. International Congress of Biophysics, Moscow (in the Press).Google Scholar
Chance, B. (1973 b). Electrochromic responses of merocyanine probes in energy coupling responses of submitochondrial particles (SMP). Fedn Proc. Fedn Am. Socs exp. Biol. 32, 2569.Google Scholar
Chance, B., Azzi, A., Lee, I. Y., Lee, C. P. & Mela, L. (1969 a). The nature of the respiratory chain: location of energy conservation sites, the high energy store, electron transfer-linked conformation changes and the ‘closedness’ of submitochondrial vesicles. In Mitochondrial Structure and Compartmentation. FEBS Symposium, vol. 17 (ed. Ernster, L. and Drahota, Z.), pp. 233–73. London: Academic Press.Google Scholar
Chance, B., Azzi, A., Mela, L., Radda, G. K. & Vainio, H. (1969 b). Local anesthetic induced changes of a membrane bound fluorochrome. A link between ion uptake and membrane structure. FEBS Lett. 3, 1013.Google Scholar
Chance, B., Crofts, A. R., Nishimura, M. & Price, B. (1970). Fast membrane H+ binding in the light-activated state of chromatin chromatophores. Eur. J. Biochem. 13, 364–74.Google Scholar
Chance, B., Lee, C. P. & Blasie, J. K. (1971). Probes of Structure and Function of Macromolecules, vol. 1. New York, London: Academic Press.Google Scholar
Chang, T. & Peneesky, H. S. (1973). Aurovertin, a fluorescent probe of conformational change in beef heart mitochondrial adenosine triphosphatase. J. biol. Chem. 248, 2746–54.CrossRefGoogle ScholarPubMed
Chapman, D. (1973). Some recent studies of lipids, lipid-cholesterol and membrane systems. In Biological Membranes, vol. 2 (ed. Chapman, D. and Wallach, D. G. H.), pp. 91144. London, New York: Academic Press.Google Scholar
Chapman, D. & Salsbury, N. J. (1966). Physical studies of phospholipids. Proton magnetic resonance studies of molecular motion in some 2,3-diacyl-DL-phosphatidylethanolamines. Trans. Faraday Soc. 60, 2607–21.CrossRefGoogle Scholar
Cogan, U., Shinitzky, M., Weber, C. & Nishida, T. (1973). Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry, N.Y. 12, 521–8.CrossRefGoogle ScholarPubMed
Cohen, L. B. (1973). Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev. 53, 373478.CrossRefGoogle ScholarPubMed
Cohen, I. B. & Changeux, J. P. (1973). Interaction of a fluorescent ligand with membrane-bound cholinergic receptor from Torpedo marmorata. Biochemistry, N. Y. 12, 4855–64.Google Scholar
Cohen, I. B., Landowne, D., Shrivastav, B. B. & Ritchie, J. M. (1970). Changes in fluorescence of squid axons during activity. Biol. Bull. mar. biol. Lab., Woods Hole 139, 418.Google Scholar
Colley, C. M. & Metcalfe, J. C. (1972). The localization of small molecules in lipid bilayers. FEBS Lett. 24, 241–6.CrossRefGoogle ScholarPubMed
Colonna, R., Massari, S. & Azzone, G. F. (1973). The problem of cation- binding sites in the energized membrane of intact mitochondria. Eur. J. Biochem. 34, 577–85.CrossRefGoogle Scholar
Cone, R. A. (1972). Rotational diffusion of Rhodopsin in the visual receptor membrane. Nature New Biol. 236, 3943.Google Scholar
Conti, F. (1974). Fluorescent probes in nerve membranes. A. Rev. Biophys. Bioeng. (in the Press).Google Scholar
Conti, F., Floravanti, R., Malerba, F. & Wanke, E. (1974). A comparative analysis of extrinsic fluorescence in nerve membranes and lipid bilayers. Biophys. Struct. Mechanism 1, 119.CrossRefGoogle ScholarPubMed
Conti, F. & Malerba, F. (1972). Fluorescence signals in ANS-stained lipid bilayers under applied potentials. Biophysik 8, 326–32.Google Scholar
Conti, F. & Tasaki, I. (1970). Changes in extrinsic fluorescence in squid axons during voltage-clamp. Science, N. Y. 169, 1322–4.CrossRefGoogle ScholarPubMed
Conti, F., Tasaki, I. & Wanke, E. (1971). Fluorescence signals in ANSstained squid giant axons during voltage-clamp. Biophysik 8, 5870.CrossRefGoogle ScholarPubMed
Conti, F. & Wanke, E. (1971). Changes produced by electrical stimulation in the extrinsic ANS fluorescence of nerve membranes. In Proc. First Europ. Biophysics Congress, vol. 10 (ed. Broda, E., Locker, A. and Springer-Lederer, H.), pp. 199206. Wien: Verlag der Wiener Medizinischen Akademie.Google Scholar
Cramer, W. A. & Phillips, S. K. (1970). Response of an Escherichia coil- bound fluorescent probe to colicin Ei. J. Bact. 104, 819–25.Google Scholar
Cramer, W. A., Phillips, S. K. & Keenan, T. W. (1973). On the role of membrane phase in the transmission mechanism of colicin Ei. Biochemistry, N.Y. 12, 177–81.CrossRefGoogle Scholar
Crifo', C., Strom, R., Scioscia, Santoro A. & Mondovi', B. (1971). Fluorescence of leucensomycin upon binding to erythrocyte ghosts. FEBS Lett. 17, 121–6.Google Scholar
Dallner, G. & Azzi, A. (1972). Structural properties of rough and smooth microsomal membranes. A study with fluorescence probe. Biochim. biophys. Acta 255, 589601.Google Scholar
Dallner, C., Ernster, L. & Azzi, A. (1971). Structural properties of the microsomal membranes. Chemico Biol. Interactions 3, 254–5.Google Scholar
Davila, H. V., Cohen, L. B. & Waggoner, A. S. (1972). Changes in axon fluorescence during activity. Biophys. J. 12, 124a.Google Scholar
Davila, H. V., Cohen, L. B., Salzberg, B. M. & Shrivastav, B. B. (1974). Changes in ANS and TNS fluorescence in giant axons from Loligo. J. Membrane Biol. 15, 2946.CrossRefGoogle ScholarPubMed
Davila, H. V., Salzberg, L. B., Cohen, A. S. & Waggoner, A. S. (1973). A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nature New Biol. 241, 159–60.Google Scholar
Deamer, D. W., Prince, R. C. & Crofts, A. R. (1972). The response of fluorescent amines to pH gradients across liposome membranes. Biochim. biophys. Acta 274, 323–35.CrossRefGoogle ScholarPubMed
Dell'Antone, P., Colonna, R. & Azzone, G. F. (1972). The membrane structure studied with cationic dyes. 1. The binding of cationic dyes to submitochondrial particles and the question of the polarity of the iontranslocation mechanism. Eur. J. Biochem. 24, 553–65.Google Scholar
Dell', Antone P., Frigeri, L. & Azzone, G. F. (1973). The effects of electrolytes on the interaction of cationic dyes with energized mitochondrial fragments. Eur. J. Biochem. 34, 448–54Google Scholar
Demel, R. A., Kinsky, S. C., Kinsky, C. B. & Van, Deenen L. L. M. (1968). Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with natural and synthetic lecithins. Biochim. biophys. Acta 150, 655–65.Google Scholar
Devaux, P. & McConnell, H. M. (1972). Lateral diffusion in spin-labeled phosphatidyicholine multilayers. J. Am. chem. Soc. 94, 4475–81.CrossRefGoogle Scholar
Dionisi, O., Arslan, P., Galeotti, T., Terranova, T. & Azzi, A. (1973). Interaction of fluorescent probes with liver plasma membranes. IXth mt. Cong. of Biochemistry, Stockholm, p. 256.Google Scholar
Dorrance, R. C. & Hunter, R. C. (1972). Absorption and emission studies of solubilization in micelles. I. Pyrene in long-chain cationic micelles. J. Chem. Soc. Faraday Trans. 68, 1312–21.Google Scholar
Drabikowski, W., Lagwinska, E. & Sarzala, M. G. (1973) Filipin as a fluorescent probe for the location of cholesterol in the membranes of fragmented sarcoplasmic reticulum. Biochim. biophys. Acta 291, 6170.Google Scholar
Easter, J. H. & Brand, L. (1973). Nanosecond time-resolved emission spectroscopy of a fluorescent probe bound to L-α-egg lecithin vesicles. Biochem. biophys. Res. Commun. 52,CrossRefGoogle Scholar
Eilermann, L. J. M. (1970). Oxidative phosphorylation in Azotobacter vinelandii. Atebrin as a fluorescent probe for the energized state. Biochim. biophys. Acta 216, 231–3.CrossRefGoogle ScholarPubMed
Eilermann, L. J. M. (1971). Atebrin as a probe for the energized state of phosphorylating membrane fragments from Azotobacter vinelandii. In Energy Transduction in Respiration and Photosynthesis (ed. Quagliariello, E., Papa, S. and Rossi, C. S.), pp. 659–63. Ban: Adriatica Editrice.Google Scholar
Ernster, L., Nordenbrand, K., Lee, C. P., Avi-Dor, Y. & Hundal, T. (1971). Qualitative and quantitative aspects of the energized state of mitochondria. Studies with the fluorescence probe 8-anilino-1-naphthalenesuiphonic acid. In Energy Transduction in Respiration and Photosynthesis. I. U.B. Symposium Series, 43 (ed. Quagliariello, E., Rossi, C. R. and Papa, S.), pp. 5787. Ban: Adriatica Editrice.Google Scholar
Faucon, J. F. & Lussan, C. (1973). Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence. Biochim. biophys. Acta 307, 459–66.Google Scholar
Feinstein, M. B., Spero, L. & Felsenfield, H. (1970). Interaction of a fluorescent probe with erythrocyte membrane and lipids: effects of local anesthetics and calcium. FEBS Lett. 6, 245–8.CrossRefGoogle ScholarPubMed
Flanagan, M. T. & Hesketh, T. R. (1973). Electrostatic interactions in the binding of fluorescent probes to lipid membranes. Biochim. biophys. Acta 298, 535–45.CrossRefGoogle ScholarPubMed
Fortes, P. A. G. & Hoffmann, J. F. (1971). Interactions of the fluorescent anion 1-anilino-8-naphthalene sulfonate with membrane charges in human red cell ghosts. J. Membrane Biol. 5, 154–68.Google Scholar
Fortes, P. A. G. & Hoffmann, J. F. (1971). The interaction of fluorescent probes with anion permeability pathways of human red cells. J. Membrane Biol. (in the Press).Google Scholar
Förster, T. (1951). Fluoreszenz organischer Verbindung, p. 8. Göttingen: Vandenhoeck and Ruprecht.Google Scholar
Förster, T. & Kasper, K. (1955). Ein Konzentration unschlag der Fluoreszenz des Pyrens. Z. Elektrochem. 59, 976–80.Google Scholar
Freedman, R. B., Hancock, D. G. & Radda, G. K. (1971). The design of fluorescent probes for membranes. In Probes of Structure and Function of Macromolecules and Membranes, pp. 325–38. New York, London: Academic Press.Google Scholar
Freedman, R. B. & Radda, G. K. (1969). The interaction of 1-anilino-8- naphthalene suiphonate with erythrocyte membranes. FEBS Lett. 3, 150–2.Google Scholar
Frye, L. D. & Edmin, M. (1970). The rapid intermixing of cell surface antigens after formation of mouse-human heterokarions. J. Cell Sci. 7, 319–35.Google Scholar
Galla, H. J. & Sackmann, E. (1974). Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes. Biochim. biophys. Acta 339, 103–15.CrossRefGoogle ScholarPubMed
Gitler, C. (1971). Microscopic properties of discrete membrane loci. In Biornembranes, vol. 2 (ed. Manson, L. A.), pp. 4173. New York, London: Plenum Press.Google Scholar
Gitler, C. (1972). Plasticity of biological membranes. A. Rev. Biophys. Bioeng. 1, 5192.CrossRefGoogle ScholarPubMed
Gitler, C., Rubalcava, B. & Caswell, A. (1969). Fluorescence changes of ethidium bromide on binding to erythrocyte and mitochondrial membranes. Biochim. biophys. Acta 193, 479–81.Google Scholar
Gitler, C. & Rubalcava, B. (1971). Interaction of fluorescent probes with hemoglobin free erythrocyte membranes. In Probes of Structure and Function of Macromolecules and Membranes (ed. Chance, B., Lee, C. P. and Blasie, J. K.), pp. 311–23. New York, London: Academic Press.CrossRefGoogle Scholar
Goldman, D. E. (1943). Potential, impedance and rectification in membranes. J. gen. Physiol. 27, 3760.Google Scholar
Gomperts, B., Lantelme, F. & Stock, R. (1970). Ion association reactions with biological membranes, studied with the fluorescent dye 1-anilino-8- naphthalenesulfonate. J. Membrane Biol. 3, 241–66.Google Scholar
Gromet-Elhanan, Z. (1972). Changes in the fluorescence of atebrin and of anilino-naphthalene sulfonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores. Eur. J. Biochem. 25, 84–8.CrossRefGoogle ScholarPubMed
Gulik-Krzywicki, T., Shechter, E., Iwatsubo, M., Ranck, J. L. & Luzzatti, V. (1970). Correlations between structure and spectroscopic properties in membrane model systems. Tryptophan and i-anilino8-naphthalene-sulfonate fluorescence in protein-lipid water phase. Biochim. biophys Acta 219, 110.CrossRefGoogle Scholar
Haaker, H., Berden, J. A., Kraayenhof, R., Katan, M. & Van, Dam K. (1972). The use of probes as indicators of energization of membranes. In Biochemistry and Biophysics of Mitochondrial Membranes (ed. Carafoli, E., Quagliariello, E., Azzone, G. F., Lehninger, A. L. and Siliprandi, N.), pp. 329–40. New York, London: Academic Press.Google Scholar
Harris, R. A. (1971). Studies on the fluorescence and binding of 8-anilino- i-naphthalene sulfonate by submitochondrial particles. Archs Biochem. Biophys. 147, 436–45.Google Scholar
Hauser, H., Chapman, D. & Dawson, R. M. C. (1969). Physical studies of phospholipids. XI. Ca2+ binding to monolayers of phosphatidylserine and phosphatidylinositol. Biochim. biophys. Acta 183, 320–33.CrossRefGoogle ScholarPubMed
Haynes, D. H. (1974). 1-Anilino-8-naphthalenesulfonate: a fluorescent indicator of ion binding and electrostatic potential on the membrane surface. J. Membrane Biol. 17, 341–66.CrossRefGoogle ScholarPubMed
Haynes, D. H. & Pressman, B. C. (1974). X 537A: a Ca2+ ionophorewitha polarity-dependent and complexation-dependent fluorescence signal. J. Membrane Biol. 16, 195205.Google Scholar
Haynes, D. H. & Staerk, H. (1974). 1-Anilino-8-naphthalenesulfonate: a fluorescent probe of membrane surface structure, composition and mobility. J. Membrane Biol. 17, 313–40.Google Scholar
Hawkins, H. C. & Freedman, R. B. (1973). Fluorescence studies of drug and cation interactions with microsomal membranes. FEBS Lett. 31, 301–7.Google Scholar
Hodgkin, A. L. & Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol., Lond. 108, 3777.CrossRefGoogle ScholarPubMed
Inbar, M., Shinitzky, M. & Sachs, L. (1974). Microviscosity in the surface membrane lipid layer of intact normal lymphocytes and leukemic cells. FEBS Lett. 38, 268–70.CrossRefGoogle ScholarPubMed
Isenberg, I., Dyson, R. D. & Hanson, R. (1973). Studies on the analysis of fluorescence decay data by the method of moments. Biophys. J. 13, 1090–115.Google Scholar
Jasaitis, A. A., Kuliene, V. V. & Skulachev, V. P. (1971). Anilinonaphthalene sulfonate fluorescence changes induced by non-enzymatic generation of membrane potential in mitochondria and submitochondrial particles. Biochim. biophys. Acta 234, 177–81.Google Scholar
Jasaitis, A. A., Van, Chu L. & Skulachev, V. P. (1973). Anilinonaphthalene sulfonate and other synthetic ions as mitochondrial membrane penetrants: an H+ pulse technique study. FEBS Lett. 31, 241–5.Google Scholar
Kasai, M. & Changeux, J. P. (1969). In vitro interaction of 1-anilino-8-naphthalene sulfonate with excitable membranes isolated from the electric organ of Electrophorus electricus. Biochem. biophys. Res. Commun. 36, 420–7.Google Scholar
Kasai, M., Podleski, T. R. & Changeux, J. P. (1970). Some structural properties of excitable membranes labelled by fluorescent probes. FEBS Lett. 7, 1319.Google Scholar
Keith, A. D., Sharnoff, M. & Cohn, G. (1973). A summary and evaluation of spin labels used as probes for biological membrane structure. Biochim. biophys. Acta 300, 379419.Google Scholar
Koblin, D. D., Kaufmann, S. A. & Wang, H. H. (1973). Quenching of 1-anilinonaphthalene-8-sulfonate fluorescence by a spin-labeled local anesthetic: a membrane phenomenon. Biochem. biophys. Res. Commun. 53, 1077–83.CrossRefGoogle ScholarPubMed
Kornberg, R. D. & McConnell, H. M. (1971). Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry, N. Y. 10, 1111- 20Google ScholarPubMed
Kraayenhof, R. (1970). Quenching of uncoupler fluorescence in relation on the ‘energized state’ in chloroplasts. FEBS Lett. 6, 161–5.Google Scholar
Kraayenhof, R. & Katan, M. B. (1971). Energization of the chioroplast membrane as revealed by fluorescent probes. IInd mt. Cong. on Photosynthesis, Stresa. Pp. 937–49.Google Scholar
Krasne, S., Eisenman, C. & Szabo, G. (1971). Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin. Science, N.Y. 171, 414–15.Google Scholar
Kuhn, H. (1971). Synthetic lipid and lipoprotein membranes. Coll. Ges. Biol. Chem. 22, 229–33.Google Scholar
Ladbrooke, B. D., Williams, R. M. & Chapman, D. (1968). Studies on lecithin-cholesterol-water interactions by differential scanning colonmetry and X-ray diffraction. Biochim. biophys. Acta 150, 333–40.Google Scholar
Lakowicz, J. R. & Weber, C. (1973). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, N. Y. 12, 4161–70.Google Scholar
Laris, P. C. & Hoffman, J. F. (1973). Membrane potentials in human red blood cells determined using a fluorescent probe. Fedn Proc. Fedn Am. Socs exp. Biol. 32, 271.Google Scholar
Latt, S. A., Cfieung, H. T. & Blout, E. R. (1965). Energy transfer A system with relatively fixed donor-acceptor separation. J. Am. chem. Soc. 87, 9951003.Google Scholar
Layton, D. G. (1973). The interaction of fluorescent probes with model membrane and biological membrane systems. Thesis, University of London.Google Scholar
Layton, D., Azzi, A. & Giziorri, P. (1973 a). The use of the fluorescent probe aurovertin, to monitor energy linked conformational changes in mitochondrial ATPases. FEBS Lett. 36, 8792.Google Scholar
Layton, D., Symmons, P. & Williams, P. (1973 b). The interaction of positively and negatively charged dye molecules with submitochondrial particles during oxidative phosphorylation. Biochim. Soc. Trans. London, pp. 418–21.CrossRefGoogle Scholar
Layton, D. G., Symmons, P. & Williams, W. P. (1974). An analysis of the binding of 8-anilino-1-naphthalene-sulphonate to sub-mitochondrial particles. FEBS Lett. 41, 17.CrossRefGoogle ScholarPubMed
Lee, A. G., Birdsall, N. J. M. & Metcalfe, J. C. (1973). Measurement of fast-lateral diffusion of lipids in vesicles and in biological membranes by 1H nuclear magnetic resonance. Biochemistry, N.Y. 12, 1650–9.Google Scholar
Lee, C. P. (1971). A fluorescent probe of the hydrogen ion concentration in ethylenediaminetetraacetic acid particles of beef heart mitochondria. Biochemistry, N.Y. 10, 4375–81.CrossRefGoogle ScholarPubMed
Lee, C. P. (1972). Quinacrine, an intramembrane pH indicator of submitochondrial membranes. In Biochemistry and Biophysics of Mitochondrial Membranes (ed. Carafoli, E., Quagliariello, E., Azzone, G. F., Lehninger, A. L. and Siliprandi, N.), pp. 293308. New York, London: Academic Press.Google Scholar
Lesslauer, W., Cain, J. & Blasie, J. K. (1971). On the location of i-anilino-8-naphthalene-sulfonate in lipid model systems. An X-ray diffraction study. Biochim. biophys. Acta 241, 547–66.Google Scholar
Lesslauer, W., Cain, J. E. & Blasie, J. K. (1973). X-ray diffraction studies of lecithin bimolecular leaflets with incorporated fluorescent probes. Proc. natn. Acad. Sci. U.S.A. 69, 1499–503.Google Scholar
Letellier, L. & Shechter, E. (1973). Correlations between structure and spectroscopic properties in membrane model system. Fluorescence and circular dichroism of the cytochrome c–cardiolipin system. Eur. J. Biochem. 40, 507–12.CrossRefGoogle ScholarPubMed
Levine, Y. K., Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C. & Robinson, J. D. (1973). The interaction of paramagnetic ions and spin labels with lecithin bilayers. Biochim. biophys. Acta 291, 592607.Google Scholar
Lippert, E. (1957). Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten Angeregten Singulettzustand. Z. Elektrochem. 61, 962–75.Google Scholar
Lombardi, J. R. & Dafforn, G. A. (1966). Anisotropic rotational relaxation in rigid media by polarized photoselection. J. chem. Phys. 44, 3882–7.Google Scholar
Long, R. A. & Hsia, J. C. (1973). A spin-labelled fluorescent probe for membranes. Can. J. Biochem. 51, 876–82.CrossRefGoogle ScholarPubMed
Lussan, C. & Faucon, J. F. (1974). Effects of ions on vesicles and phospholipid dispersions studied by polarization of fluorescence. FEBS Lett. (in the Press).Google Scholar
Massari, S. (1974). The interaction of atebrin with phospholipid vesicles. Biochim. biophys. Acta (in the Press).Google Scholar
Mäntsälä, P. & Lang, M. (1973).1-Anilino-8-naphthalene sulfonate and Nphenyl-1-naphthylamine as the indicators of bacterial thermosensitivity. FEBS Lett. 36, 265–7.Google Scholar
Matsubara-Kahn, J. (1973). Evaluation of quantum efficiency shift with energization of anilino-naphthalene-sulfonate bound membranes of micrococcus denitrificans. Pl. Cell. Physiol., Tokyo 14, 9971007.Google Scholar
McClure, W. O. & Edelman, G. M. (1966). Fluorescent probes for conformational states of proteins. I. Mechanisms of fluorescence of 2-ptoluidinylnaphthalene-6-sulfonate, a hydrophobic probe. Biochemistry, N.Y. 5, 1908–18.Google Scholar
Memming, R. (1961). Theorie der Fluoreszenzpolarisation für nicht kugelsymmetrische Molekule. Z. phys. Chem. N.F. 12, 168.CrossRefGoogle Scholar
Metcalfe, J. C., Metcalfe, S. M. & Engelman, D. M. (1971). Structural comparison of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniques. Biochim. biophys. Acta 241, 412–21.Google Scholar
Montal, M. & Gitler, C. (1973). Surface potential and energy-coupling in bioenergy-conserving membrane systems. J. Bioenerget. 4 363–82.Google Scholar
Newton, B. A. (1954). Site of action of polymyxin on Pseudomonas aeruginosa: antagonism by cations. J. gen. Microbiol. 10, 491.Google Scholar
Nordenbrand, K. & Ernster, L. (1971). Studies of the energy-transfer system of submitochondrial particles. Fluorochrome response as a measure of the energized state. Eur. J. Biochem. 18, 258–73.Google Scholar
Oldfield, E. & Chapman, D. (1972). Dynamics of lipids in membranes: heterogeneity and the role of cholesterol. FEBS Lett. 23, 285–97.Google Scholar
Oster, G. & Nishijima, Y. (1956). Fluorescence and internal rotation: their dependence on viscosity of the medium. J. Am. chem. Soc. 78, 1581–4.Google Scholar
Overath, P., Hill, F. F. & Lamnek-hirsch, I. (1971). Biogenesis of E. coil membrane: evidence for randomization of lipid phase. Nature New Biol. 234, 264–7.CrossRefGoogle Scholar
Overath, P. & Träuble, H. (1973). Phase transition in cells, membranes, and lipids of Escherichia coil. Detection by fluorescent probes, light scattering, and dilatometry. Biochemistry, N. Y. 12, 2625–34.Google Scholar
Overbeek, J. Th. (1949). In Colloid Science. vol. i (ed. Kruyt, H. R.), pp. 128–32. Amsterdam: Elsevier Publishing Co.Google Scholar
Papahadjopoulos, D., Cowden, M. & Kimelberg, H. (1973 a). Role of cholesterol in membranes. Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. Biochim. biophys. Acta 330, 826.CrossRefGoogle ScholarPubMed
Papahadjopoulos, D., Jacobson, K., Nir, S. & Isac, T. (1973 b). Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. biophys. Acta 311, 330–48.Google Scholar
Papafiadjopoulos, D. & Watkins, J. C. (1967). Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. Biochim. biophys. Acta 135, 639.Google Scholar
Patrick, J., Valeur, B., Monnerie, L. & Changeux, J. P. (1971). Changes in extrinsic fluorescence intensity of the electroplax membrane during electrical excitation. J. Membrane Blot. 5, 102–20.Google Scholar
Penefsky, H. S. & Datta, A. (1969). Interaction of fluorescent probes with mitochondrial membranes during oxidative phosphorylation. Fedn Proc. Fedn Am. Socs exp. Biol. 28, 2261.Google Scholar
Penzer, G. R. (1972). 1-Anilinonaphthalene-8-sulphonate. The dependence of emission spectra on molecular conformation studied by fluorescence and proton-magnetic resonance. Eur. J. Biochem. 25, 218–28.Google Scholar
Perrin, H. M. (1926). Polarization de la lumière de fluorescence. Vie moyenne des molecules dans l'état excité. J. Phys. Radium 7, 390401.Google Scholar
Phillips, S. K. & Cramer, W. A. (1973). Properties of the fluorescence probe response associated with the transmission mechanism of colicin E I. Biochemistry, N.Y. 12, 1170–6.Google Scholar
Phillips, M. C., Williams, R. M. & Chapman, D. (1969). On the nature of hydrocarbon chain motions on lipid liquid crystals. Chem. Phys. Lipids 3, 234.Google Scholar
Racker, E. & Kandrach, A. (1971). Reconstitution of the third site of oxidative phosphorylation. J. biol. Chem. 246, 7069–71.CrossRefGoogle ScholarPubMed
Radda, G. K. (1971 a). The design and use of fluorescent probes for membrane studies. In Current Topics in Bioenergetics (ed. Sanadi, D. R.), pp. 81125. New York, London: Academic Press.Google Scholar
Radda, G. K. (1971 b). Enzyme and membrane conformation in biochemical control. Biochem. J. 132, 385–96.Google Scholar
Radda, G. K. & Smith, D. S. (1970). Retinol: a fluorescent probe for membrane lipids. FEBS Lett. 9, 287–9.Google Scholar
Radda, G. K. & Vanderkooi, J. (1972). Can fluorescent probes tell us anything about membranes? Biochim. biophys. Acta 265, 509–49.Google Scholar
Rigeer, R. & Ehrenberg, M. (1973). Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy. Q. Rev. Biophys. 6, 139–99.Google Scholar
Romeo, D., Cramer, R. & Rossi, F. (1970). Use of 1-anilino-8-naphthalene sulfonate to study structural transitions in cell membrane of PMN leucocytes. Biochem. biophys. Res. Commun. 41, 582–8.Google Scholar
Rouser, G., Nelson, G. J., Fleischer, S. & Simon, G. (1968). Lipid com position of animal cell membranes. Organelles and organs. In Biological Membranes (ed. Chapman, D.), pp. 569. New York, London: Academic Press.Google Scholar
Rubalcava, B., Martinez De Muñoz, D. & Gitler, C. (1969). Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes. Biochemistry, N. Y. 8, 2742–7.Google Scholar
Rudy, B. & Gitler, C. (1972). Microviscosity of the cell membrane. Biochim. biophys. Acta 288, 131–6.Google Scholar
Sackmann, E. & Träuble, H. (1972). Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition. J. Am. chem. Soc. 94, 4482–9I.Google Scholar
Scandella, C. J., Devaux, P. & McConnell, H. M. (1972). Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. Proc. natn. Acad. Sci. U.S.A. 69, 2056–60.CrossRefGoogle ScholarPubMed
Schuldiner, S. & Avion, M. (1971). On the mechanism of the energy-dependent quenching of antebrin fluorescence in isolated chioroplasts. FEBS Lett. 14, 233–6.CrossRefGoogle Scholar
Secrist, J. A., Barrio, J. R. & Leonard, N. Y. (1972). A fluorescent modification of adenosine triphosphate with activity in enzyme systems: 1, N6-ethenoadenosine triphosphate. Science, N.Y. 175, 646–7.Google Scholar
Sheetz, M. P. & Chan, S. I. (1972). Effect of sonication on the structure of lecithin bilayers. Biochemistry, N. Y. 11, 4573–81.CrossRefGoogle ScholarPubMed
Shinitzky, M., Dianoux, A. C., Gitler, C. & Weber, G. (1971). Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probe. 1. Synthetic micelles. Biochemistry, N.Y. 10, 2106–13.Google Scholar
Shinitzky, M., Inbar, M. & Sachs, L. (1972). Rotational diffusion of lectins bound to the surface membrane of normal lymphocytes. FEBS Lett. 247–50.Google Scholar
Singer, S. J. & Nicholson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, N. Y. 175, 720–5.Google Scholar
Smolouchowski, M. (1917). Versuch einer mathematischen Theorie der Koagulationkinetik kolloider Lösung. Z. Physik. Chem. 92, 129–68.Google Scholar
Stark, G., Benz, R., Pohl, G. W. & Janko, K. (1972). Valinomycin as a probe for the study of structural changes of black lipid membranes. Biochim. biophys. Acta 266 603–12.Google Scholar
Steinemann, A., Wu, W. C. & Stryer, L. (1973). Conformational aspects of rhodopsin and retinal disc membranes. J. Supramol. Struct. 1, 348–53.Google Scholar
Stern, A. & Volmer, M. (1919). Ueber die Abklingungszeit der fluoreszenz. Physik. Z. 20, 183–8.Google Scholar
Stier, A. & Sackmann, E. (1973). Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim. biophys. Acta 311, 400–8.Google Scholar
Strickler, S. J. & Berg, R. A. (1962). Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–22.CrossRefGoogle Scholar
Stryer, L. (1966). Excited-state proton-transfer reactions. A deuterium isotope effect on fluorescence. J. Am. chem. Soc. 88, 5708–12.Google Scholar
Stryer, L. (1968). Fluorescence spectroscopy of protein. Science, N.Y. 162, 526–33.Google Scholar
Stryer, L. & Haugland, R. P. (1967). Energy transfer: a spectroscopic ruler. Proc. natn. Acad. Sci. U.S.A. 58, 719–26.CrossRefGoogle ScholarPubMed
Tao, T. (1969). Time-dependent fluorescence depolarization and brownian rotational diffusion coefficients of macromolecules. Biopolymers 8, 609–32.Google Scholar
Tasaki, I., Carbone, E., Sisco, K. & Singer, I. (1973 a). Spectral analyses of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives. Biochim. biophys. Acta 323, 220–33.Google Scholar
Tasaki, I., Carnay, L., Sandlin, R. & Watanabe, A. (1969 a). Fluorescence changes during conduction in nerves stained with acridine orange. Science, N.Y. 163, 683–5.Google Scholar
Tasaki, I., Carnay, L. & Takenaka, I. (1972). Resting and action potential of intracellulary perfused giant axon. Proc. natn. Acad. Sci. U.S.A. 48, 1177–84.Google Scholar
Tasaki, I., Carnay, L. & Watanabe, A. (1969 b). Transient changes in extrinsic fluorescence of nerve produced by electric stimulation. Proc. natn. Acad. Sci. U.S.A. 64, 1362–8.Google Scholar
Tasaki, I., Hallett, M. & Carbone, E. (1973 b). Further studies of nerve membranes labeled with fluorescent probes. J. Membrane Biol. 11, 353–76.Google Scholar
Tasaki, I., Watanabe, A. & Hallett, M. (1971). Properties of squid axon membrane as revealed by a hydrophobic probe, 2-p-toluidinylnaphtha- lene-6-sulfonate. Proc. natn. Acad. Sci. U.S.A. 68, 938–41.Google Scholar
Tasaki, I., Watanabe, A., Sandlin, R. & Carnay, L. (1968). Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc. natn. Acad. Sci. U.S.A. 61, 883–8.Google Scholar
Tedeschi, H. (1974). Mitochondrial membrane potential: evidence from studies with a fluorescent probe. Proc. natn. Acad. Sci. U.S.A. 71, 583–5.Google Scholar
Tondre, C. & Hammes, C. C. (1973). A kinetic study of the binding of an ADP fluorescent analog to mitochondrial ATPase. Biochim. biophys. Acta, 314, 245–9.Google Scholar
Tourtellotte, E., Brandon, D. & Keith, A. (1970). Membrane structure: spin labeling and freeze etching of Mycoplasma laidlawii. Proc. natn. acad. Sci. U.S.A. 66, 909–16.Google Scholar
Träuble, H. (1971 a). The movement of molecules across lipid membranes: a molecular theory. J. Membrane Biol. 4, 193208.Google Scholar
Träuble, H. (1971 b). Phasenumwandlungen in Lipiden Mögliche Schaltprozesse in biologischen Membranen. Naturwissenschaften 58, 277–84.CrossRefGoogle Scholar
Trauble, H. & Eibl, H. (1974). Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proc. natn. Acad. Sci. U.S.A. 71, 214–19.Google Scholar
Träuble, H. & Overath, P. (1973). The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions. Biochim. biophys. Acta 307, 491512.Google Scholar
Träuble, H. & Sackmann, E. (1972). Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid phase transition. J. Am. chem. Soc. 94, 4499–510.Google Scholar
Vainio, H., Baltscheffsky, M., Baltscheffsky, H. & Azzi, A. (1972). Energy-dependent changes in membranes of Rhodospirillum rubrum chromatophores as measured by 8-anilino-naphthalene- 1 -sulfonic acid. Eur. J. Biochem. 30, 301–6.Google Scholar
Van, De Stadt R. J. & Van, Dam K. (1974). Binding of aurovertin to phosphorylating submitochondrial particles. Biochim. biophys. Acta (in the Press).Google Scholar
Van, De Stadt R. J., Van, Dam K. & Slater, E. C. (1974). Interaction of aurovertin with submitochondrial particles deficient in ATPase inhibitor. Biochim. biophys. Acta (in the Press).Google Scholar
Vanderkooi, J. M. & Callis, J. B. (1974). Pyrene: a probe of lateral diffusion in the hydrophobic region of membranes. Biochemistry, N. Y. (in the Press).Google Scholar
Vanderkoox, J., Callis, J. & Chance, B. (1974 a). Use of the fluorescent dye, pyrene, to study the dynamic aspects of membrane structure. Histochemical J. 6, 301–10.CrossRefGoogle Scholar
Vanderkooi, J. M. & Chance, B. (1972). Temperature sensitivity of fluorescent probes in the presence of model membranes and mitochondria. FEBS Lett. 22, 23–6.Google Scholar
Vanderkooi, J., Erecinska, M. & Chance, B. (1973). Cytochrome c interaction with membranes. 1. Use of a fluorescent chromophore in the study of cytochrome c interaction with artificial and mitochondrial membranes. Archs Biochem. Biophys. 154, 219–29.Google Scholar
Vanderkooi, J., Fischkoff, S., Chance, B. & Cooper, R. A. (1974 b). Fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes. Biochemistry, N. Y. (in the Press).Google Scholar
Vanderkooi, J. & Martonosi, A. (1969). Sarcoplasmic reticulum. VIII. Use of 8-anilino- 1-naphthalene sulfonate as conformational probe on biological membranes. Archs Biochem. Biophys. 133, 153–63.Google Scholar
Vanderkooi, J. M. & Martonosi, A. (1971 a). Sarcoplasmic reticulum. XII. The interaction of 8-anilino- 1 -naphthalene sulfonate with skeletal muscle microsomes. Archs Biochem. Biophys. 144, 8798.CrossRefGoogle Scholar
Vanderkooi, J. M. & Martonosi, A. (1971 b). Sarcoplasmic reticulum. XIII. Changes in the fluorescence of 8-anilino-1-naphthalene sulfonate during Ca2+ transport. Archs Biochem. Biophys. 144, 99106.CrossRefGoogle Scholar
Vanderkooi, J. & Martonosi, A. (1971 c). Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes. In Probes of Structure and Function of Macromolecules (ed. Chance, B., Lee, C. P. and Blasie, J. K.), pp. 293301. New York, London: Academic Press.Google Scholar
Vanderkooi, J. M. & Martonosi, A. (1971 d). Sarcoplasmic reticulum. XVI. The permeability of phosphatidyl choline vesicles for calcium. Archs Biochem. Biophys. 147, 632–46.Google Scholar
Vaughan, W. M. & Weber, G. (1970). Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry, N.Y. 12, 464–73.Google Scholar
Yguerabide, J., Epstein, H. F. & Stryer, L. (1970). Segmental flexibility in an antibody molecule. J. Molec. Biol. 51, 573–90.Google Scholar
Yguerabide, J. & Stryer, L. (1971). Fluorescence spectroscopy of an oriented model membrane. Proc. natn. Acad. Sci. U.S.A. 68, 1217–21.Google Scholar
Yoda, A. & Hokin, L. E. (1972). Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. Molec. Pharmacot. 8, 3040.Google Scholar
Wallach, D. F. H. (1973). The role of the plasma membrane in disease processes. In Biological Membranes, vol. 2 (ed. Chapman, D. and Wallach, D. F. H.), pp. 253–94. London, New York: Academic Press.Google Scholar
Wallach, D. F. H., Ferber, E., Selin, D., Weidekamm, E. & Fischer, H. (1970). The study of lipid-protein interactions in membranes by fluorescent probes. Biochim. biophys. Acta 203, 6776.Google Scholar
Waggoner, A. S., Kingzett, T. J., Rottschaefer, S., Griffith, O. H. & Keith, A. D. (1969). A spin-labelled lipid for probing biological membranes. J. chem. Phys. Lipid. 3, 245–53.Google Scholar
Waggoner, A. S. & Stryer, L. (1970). Fluorescent probes of biological membranes. Proc. natn. Acad. Sci. U.S.A. 67, 579–89.Google Scholar
Weber, G. (1952). Polarization of the fluorescence of macromolecules. 2. Fluorescent conjugates of ovalbumin and bovine serum albumin. Biochem. J. 51, 155–67.Google Scholar
Weber, G. (1953). Rotational brownian motion and polarization of the fluorescence of solutions. Adv. Protein Chem. 8, 415–59.Google Scholar
Weber, G. (1971). Theory of fluorescence depolarization by anisotropic brownian solution and on the solid phase. Proc. biochem. Soc. 56.Google Scholar
Weber, G. & Laurence, J. R. (1954). Fluorescent indicators of adsorption in aqueous solution and on the solid phase. Proc. biochem. Soc. 56, xxxi.Google Scholar
Wilkins, M. H. F. (1972). X-ray studies of membranes and model systems. Ann. N.Y. Acad. Sci. 195, 291–2.Google Scholar
Wilson, G., Rose, S. P. & Fox, C. F. (1970). The effect of membrane lipid unsaturation on glycoside transport. Biochem. biophys. Res. Commun. 38, 617–23.Google Scholar
Wrigglesworth, J. M. & Packer, L. (1970). pH-dependent changes in mitochondrial membrane structure. Bioenergetics 1, 3343.Google Scholar