Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T22:45:53.208Z Has data issue: false hasContentIssue false

Constraints on the accuracy of messenger RNA movement

Published online by Cambridge University Press:  17 March 2009

C. G. Kurland
Affiliation:
Department of Molecular Biology, The Biomedical Center, Box 590, S-751 24 Uppsala, Sweden
Måns Ehrenberg
Affiliation:
Department of Molecular Biology, The Biomedical Center, Box 590, S-751 24 Uppsala, Sweden

Summary

Theoretical as well as experimental studies of translational accuracy have most often been concerned with the selection of aminoacyl-tRNA by codon-programmed ribosomes. The selection of the successive codons on the mRNA has received much less attention, probably because it represents both conceptually and experimentally, a much more demanding physical problem. Nevertheless, it would seem that errors in the selection of the codon are potentially much more destructive than errors in selection of aminoacyl-tRNA species. This can be appreciated from the following.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, D. I., Andersson, S. G. E. & Kurland, C. G. (1986 b). Functional interactions between mutated forms of ribosomal protein S4, S5 and S12. Biochimie. (In the Press).CrossRefGoogle Scholar
Andersson, D. I., Van Verseveld, H. W., Stouthammer, A. H. & Kurland, C. G. (1986 a). Suboptimal growth with hyper-accurate ribosomes. Arch. Microbiol. 144, 96101.CrossRefGoogle ScholarPubMed
Atherly, A. G. & Menninger, J. R. (1972). Mutant Escherichia coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. Nature new Biol. 240, 245246.CrossRefGoogle ScholarPubMed
Atkins, J. F., Elseviers, D. & Gorini, L. (1972). Low activity of β–galactosidase in frameshift mutants of Escherichia coli. Proc. Natn. Acad. Sci. U.S.A. 69, 11921195.CrossRefGoogle ScholarPubMed
Blomberg, C., Ehrenberg, M. & Kurland, C. G. (1980). Free energy dissipation constraints on the accuracy of enzymatic selections. Q. Rev. Biophys. 13, 231254.CrossRefGoogle ScholarPubMed
Bohman, K. T., Ruusala, T., Jelenc, P. C. & Kurland, C. G. (1984). Kinetic impairment of restrictive streptomycin resistant ribosomes. Mol. gen. Genet. 198, 9099.CrossRefGoogle ScholarPubMed
Bossi, L. & Roth, J. R. (1980). The influence of codon context on genetic code translation. Nature 286, 123127.CrossRefGoogle ScholarPubMed
Bossi, L. & Smith, D. M. (1984). Suppressor SufJ – a novel type of transfer-RNA mutant that induces translational frameshifting. Proc. natn. Acad. Sci. U.S.A. 81, 61056109.CrossRefGoogle ScholarPubMed
Bouadloun, F., Donner, D. & Kurland, C. G. (1983). Codon-specific missense errors in vivo. EMBO J. 2, 13511356.CrossRefGoogle ScholarPubMed
Buckingham, R. H. & Grosjean, H. (1986). The accuracy of messenger RNA: transfer RNA recognition. To appear in Accuracy in Molecular Processes (ed. Kirkwood, T. B. L., Rosenberger, R. F. and Galas, D. J.). London: Chapman and Hall Ltd.Google Scholar
Caplan, B. & Menninger, J. R. (1984). Dissociation of peptidyl-tRNA from ribosomes is perturbed by streptomycin and by str A mutations. Mol. gen. Genet. 194, 534538.CrossRefGoogle Scholar
Crick, F. H. C.(1966). The genetic code – yesterday, today and tomorrow. Cold Spring Harb. Symp. quant. Biol. 31, 39.CrossRefGoogle ScholarPubMed
Crick, F. H. C., Griffiths, J. S. & Orgel, L. E. (1957). Codes without commas. Proc. natn. Acad. Sci. U.S.A. 43, 416421.CrossRefGoogle ScholarPubMed
Crick, F. H. C., Leslie Barnett, F. R. S., Brenner, S. & Watts-Tobin, R. J. (1981). General nature of the genetic code for proteins. Nature 192, 12271232.CrossRefGoogle Scholar
Diaz, I., Ehrenberg, M. & Kurland, C. G. (1986). How do combinations of rpsL- and miaA- generate streptomycin dependence? Mol. gen. Genet. 202, 207211.CrossRefGoogle ScholarPubMed
Ehrenberg, M. & Kurland, C. G. (1984). Costs of accuracy determined by a maximal growth rate constraint. Q. Rev. Biophys. 17, 4582.CrossRefGoogle ScholarPubMed
Ehrenberg, M., Kurland, C. G. & Ruusala, T. (1986). Counting cycles of EF-Tu to measure proofreading in translation. Biochimie 68, 261273.CrossRefGoogle ScholarPubMed
Fuller, W. & Hodgson, A. (1967). Conformation of the anticodon loop in tRNA. Nature (Land.) 215, 817820.CrossRefGoogle Scholar
Gorini, L. (1971). Ribosomal discrimination of tRNAs. Nature new Biol. 234, 261264.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. natn. Acad. Sci. U.S.A. 71, 41354139.CrossRefGoogle ScholarPubMed
Hughes, D. (1984). External suppressors of – 1 and + 1 frameshift mutations: a genetic analysis in bacteria. Ph.D. Thesis. University of Dublin, Dublin.Google Scholar
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press.CrossRefGoogle Scholar
Kurland, C. G. (1978). The role of guanine nucleotides in protein biosynthesis. Biophys. J. 22, 373392.CrossRefGoogle ScholarPubMed
Kurland, C. G. (1979). Reading frame errors on ribosomes. In Nonsense Mutations and tRNA suppressors (ed. Celis, J. E. and Smith, J. D.), pp. 98108. Academic Press.Google Scholar
Kurland, C. G. (1985). Tuning the ribosome. In The Molecular Biology of Bacteria Growth (ed. Schaechter, M., Neidhardt, F. C., Ingraham, J. L. and Kjeldgaard, N. O.)., pp. 108120. Boston: Jones and Bartlett Publishers.Google Scholar
Kurland, C. G. & Ehrenberg, M. (1984). Optimization of translational accuracy. Prog. nucl. Acid. Res. Mol. Biol. 31, 191219.CrossRefGoogle Scholar
Kurland, C. G. & Ehrenberg, M. (1986). To appear in Ann. Rev. Biophys.Google Scholar
Lengyel, P. (1969). The process of translation as seen in 1969. Cold Spring Harb. Symp. quant. Biol. 34, 828841.CrossRefGoogle ScholarPubMed
Menninger, J. R. (1976). Peptidyl transfer RNA dissociates during protein synthesis from ribosomes of Escherichia coli. J. biol. Chem. 251, 33923398.CrossRefGoogle ScholarPubMed
Menninger, J. R., (1978). The accumulation as peptidyl-transfer RNA of isoaccepting transfer RNA families in Escherichia coli with temperature-sensitive peptidyl-transfer RNA hydrolase. J. biol. Chem. 253, 68086813.CrossRefGoogle ScholarPubMed
Menninger, J. R., Caplan, A. B., Gingrich, P. K. E., Atherly, A. G. (1983). Tests of the ribosome editor hypothesis. II. Relaxed (relA) and stringent (relA+) E. coli differ in rates of dissociation of peptidyl-tRNA from ribosomes. Mol. gen. Genet. 190, 215221.CrossRefGoogle ScholarPubMed
Menninger, J. R., Walker, C. & Foon Tan, P. (1973). Studies on the metabolic role of peptidyl-tRNA hydrolase. I. Properties of a mutant E. coli with temperature-sensitive peptidyl-tRNA hydrolase. Mol. gen. Genet. 121, 307324.CrossRefGoogle ScholarPubMed
Murgola, M. (1985). tRNA, suppression, and the code. Ann. Rev. Gen. 19, 5780.CrossRefGoogle ScholarPubMed
Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie 57, 587595.CrossRefGoogle ScholarPubMed
Parker, J., Johnston, T. C. & Boriga, P. T. (1980). Mistranslation in cells infected with the bacteriophage MS2: direct evidence of Lys for Asn substitution. Mol. gen. Genet. 180, 275281.CrossRefGoogle ScholarPubMed
Riddle, D. L. & Carbon, J. (1973). Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nature new Biol. 242, 230234.CrossRefGoogle ScholarPubMed
Riddle, D. L. & Roth, J. R. (1970). Suppressors of frameshift mutations in Salmonella typhimurium. J. molec. Biol. 54, 131144.CrossRefGoogle ScholarPubMed
Riddle, D. L. & Roth, (1972 a). Frameshift suppressors. II. Genetic mapping and dominance studies. J. molec. Biol. 66, 483493.CrossRefGoogle ScholarPubMed
Riddle, D. L. & Roth, J. R. (1972 b). Frameshift suppressors. III. Effects of suppressor mutations on transfer RNA. J. molec. Biol. 66, 493506.Google Scholar
Roth, J. R. (1974). Frameshift mutations. Ann. Rev. Gen. 8, 319346.CrossRefGoogle ScholarPubMed
Roth, J. R. (1981). Frameshift suppression. Cell 24, 601602.CrossRefGoogle ScholarPubMed
Ruusala, T., Andersson, D. I., Ehrenberg, M., and Kurland, C. G. (1984). Hyperaccurate ribosomes inhibit growth. EMBO J. 3, 25752580.CrossRefGoogle ScholarPubMed
Ruusala, T., Ehrenberg, M. & Kurland, C. G. (1982). Is there proofreading during polypeptide synthesis? EMBO J. 1, 741745.CrossRefGoogle ScholarPubMed
Spirin, A. S. (1985). Ribosomal translocation: acts and models. Progr. nucl. Acid Res. Mol. Biol. 32, 75114.CrossRefGoogle Scholar
Streisinger, G., Okada, Y., Emrick, J., Newton, J., Tsugita, A., Terzaghi, E. & Inouye, M. (1966). Cold Spring Harb. Symp. quant. Biol. 31, 7784.CrossRefGoogle Scholar
Thompson, R. C. & Karim, A. M. (1982). The accuracy of protein biosynthesis is limited by its speed: High fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP (S). Proc. natn. Acad. Sci. U.S.A. 79, 49224926.CrossRefGoogle Scholar
Watson, J. D. (1964). The synthesis of proteins upon ribosomes. Bull. Soc. Chim. Biol. 46, 13991425.Google ScholarPubMed
Weiss, R. B. (1984). Molecular model of ribosome frameshifting. Proc. natn. Acad. Sci. U.S.A. 81, 57975801.CrossRefGoogle ScholarPubMed
Weiss, R. & Gallant, J. (1983). Mechanism of ribosome frameshifting during translation of the genetic code. Nature 302, 389393.CrossRefGoogle ScholarPubMed
Woese, C. (1970). Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature (Land.) 226, 817820.CrossRefGoogle ScholarPubMed
Yourno, J. & Heath, S. (1969). Nature of the hisD3015 frameshift mutation in Salmonella typhimurium. J. Bacterial. 100, 460468.CrossRefGoogle ScholarPubMed
Yourno, J. & Tannemura, S. (1970). Restoration of in-phase translation by an unlinked suppressor of a frameshift in Salmonella typhimurium. Nature 225, 422426.CrossRefGoogle ScholarPubMed