Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T08:12:42.023Z Has data issue: false hasContentIssue false

Electrically gated ionic channels in lipid bilayers

Published online by Cambridge University Press:  17 March 2009

Gerald Ehrenstein
Affiliation:
Laboratory of Biophysics, IRP, National Institute of Neurological and Communicative Disorders and Stroke, National Institute of Health, Bethesda, Maryland 20014
Harold Lecar
Affiliation:
Laboratory of Biophysics, IRP, National Institute of Neurological and Communicative Disorders and Stroke, National Institute of Health, Bethesda, Maryland 20014

Extract

The generation of action potentials in nerve and muscle requires cell membranes with steeply voltage-dependent ionic permeabilities. The voltage-dependent, ion-selective pathways responsible for excitation have been characterized for numerous excitable tissues such as nerve axon, muscle, electric organ, algae and epithelia (Aidley, 1971; Hodgkin, 1964; Cole, 1968). The process of activating ionic pathways by some stimulus, such as a change in membrane potential, is called gating.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidley, D. J. (1971). The Physiology of Excitable cells. Cambridge University Press.Google Scholar
Alvarez, O., Diaz, E. & Latorre, R. (1975). Voltage-dependent conductance induced by hemocyanin in black lipid films. Biochim. biophys. Acta 389, 444–8.CrossRefGoogle ScholarPubMed
Alvarez, O., Latorre, R. & Verdugo, R. (1975). Kinetic characteristics of the excitability-inducing material channel in oxidized cholesterol and brain lipid bilayer membranes. J. gen. Physiol. 65, 421–39.CrossRefGoogle ScholarPubMed
Anderson, C. R. & Stevens, C. F. (1973). Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. 235, 655–91.CrossRefGoogle ScholarPubMed
Anderson, O. S. & Fuchs, M. (1975). Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys. J. 15, 795830.CrossRefGoogle Scholar
Armstrong, C. M. & Bezanilla, F. (1973). Currents related to movement of the gating particles of the sodium channel. Nature, Lond. 242, 459–61.CrossRefGoogle Scholar
Arndt, R. A. & Roper, L. D. (1975). Theory of excitable membranes. I. A simple model for a three-state artificial membrane. J. theor. Biol. 54.CrossRefGoogle Scholar
Bamberg, E. & Janko, K. (1976). Single channel conductance at lipid bilayer membranes in presence of monazomycin. Biochim. biophys. Acta 426, 447–50.CrossRefGoogle ScholarPubMed
Bamberg, E. & Lauger, P. (1973). Channel formation kinetics of gramicidin A in lipid bilayer membranes. I. Membrane Biol. 11, 177–94.CrossRefGoogle ScholarPubMed
Baumann, G. & Mueller, P. (1974). A molecular model of membrane excitability. J. Supramol. Struct. 2, 538–57.CrossRefGoogle ScholarPubMed
Bean, R. C. (1972). Multiple conductance states in single channels of variable resistance lipid bilayer membranes. J. Membrane Biol. 7, 1528.CrossRefGoogle ScholarPubMed
Bean, R. C., Shepherd, W. C., Chan, H. & Eichner, J. (1969). Discrete conductance fluctuations in lipid bilayer protein membranes. J. gen. Physiol. 53, 741–57.CrossRefGoogle ScholarPubMed
Begenisich, T. & Stevens, C. F. (1975). How many conductance states do potassium channels have? Biophys. J. 15, 842–6.CrossRefGoogle Scholar
Boheim, G. (1974). Statistical analysis of alamethicin channels in black lipid membranes. J. Membrane Biol. 19, 277303.CrossRefGoogle Scholar
Boheim, G. (1975). Untersuchungen zur Kinetik der Porenbildung durch Alamethicin in Lipidmembranen. Berichte der Bunsen-Gesellschaft für Physikalische Chemie. 79, 1168.Google Scholar
Boheim, G. & Hall, J. E. (1975). Oscillation phenomena in black lipid membranes induced by a single alamethicin pore. Biochim. biophys. Acta 389, 436–43.CrossRefGoogle ScholarPubMed
Boheim, G., Janko, K., Leibfritz, D., Ooka, T., Konig, W. A. & Jung, G. (1976). Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part B. Pore formation in black lipid films. Biochim. biophys. Acta 433, 182–99.CrossRefGoogle ScholarPubMed
Borisova, M. P., Ermishkin, L. N. & Zilbershtein, A. Y. (1974). Investigation of a single channel of conductance in a lipid bilayer. Reports of the Academy of the USSR 216, no. 4, 917–22.Google Scholar
Cherry, R. J., Chapman, D. & Graham, D. E. (1972). Studies of the conductance changes induced in bimolecular lipid membranes by alamethicin. J. Membrane Biol. 7, 325–44.CrossRefGoogle ScholarPubMed
Cole, K. S. (1949). Dynamical electrical characteristics of the squid axon membrane. Archs Sci. Physiol. 3, 253–8.Google Scholar
Cole, K. S. (1965). Electrodiffusion models for the membrane of squid giant axon. Physiol. Rev. 45, 340–79.CrossRefGoogle ScholarPubMed
Cole, K. S. (1968). Membranes, Ions and Impulses. Berkeley and Los Angeles: University of California Press.CrossRefGoogle Scholar
Conti, F., Defelice, L. J. & Wanke, E. (1975). Potassium and sodium ion current noise in the membrane of the squid giant axon. J. Physiol., Lond. 248, 4582.CrossRefGoogle ScholarPubMed
Conti, F., Hille, B., Neumke, B., Nonner, W., & Stämppli, R. (1977). Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier. J. Physiol. 262, 699728.CrossRefGoogle Scholar
Conti, F. & Wanke, E. (1975). Channel noise in nerve membranes and lipid bilayers. Q. Rev. Biophys. 8, 451506.CrossRefGoogle ScholarPubMed
Ehrenstein, G., Blumenthal, R., Latorre, R. & Lecar, H. (1974). Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer. J. gen. Physiol. 63, 707–21.CrossRefGoogle Scholar
Ehrenstein, G. & Lecar, H. (1972). The mechanism of signal transmission in nerve axons. A. Rev. Biophys. Bioeng. 1, 347–68.CrossRefGoogle ScholarPubMed
Ehrenstein, G., Lecar, H. & Latorre, R. (1977). Inactivation in bilayers and natural excitable membranes. In Ion Transport Across Membranes – The Proceedings of a Joint US–USSR Conference (ed. Tosteson, D. C., Ovchinnikov, Yu. A. and Lattore, R.). New York: Raven Press.Google Scholar
Ehrenstein, G., Lecar, H. & Nossal, R. (1970). The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J. gen. Physiol. 55, 119–33.CrossRefGoogle ScholarPubMed
Eisenberg, M., Hall, J. E. & Mead, C. A. (1973). The nature of the voltage- dependent conductance induced by alamethicin in black lipid membranes J. Membrane Biol. 14, 143176.CrossRefGoogle ScholarPubMed
Ermishkin, L. N., Kasumov, Kh. M., Potzeluyev, V. M. (1976). Single ionic channels induced in lipid bilayers by polyene antibiotics amphotericin B and nystatine. Nature, Lond. 262, 698–9.CrossRefGoogle ScholarPubMed
Finkelstein, A. & Holz, R. (1973). Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. In Membranes, vol. 2 (ed. Eisenman, G.), pp. 377408. New York: Marcel Dekker, Inc., N.Y.Google ScholarPubMed
Finkelstein, A., Rubin, L. L., Tzeng, M. (1976). Black widow spider venom: Effect of purified toxin on lipid bilayer membranes. Science, N.Y. 193, 1009.CrossRefGoogle ScholarPubMed
Fitzhugh, R. (1969). Mathematical models of excitation and propagation in nerve. In Biological Engineering (ed. Schwan, H. P.), New York: McGraw-Hill.Google Scholar
Gordon, L. G. M. & Haydon, D. A. (1972). The unit conductance channel of alamethicin. Biochim. biophys. Acta 255, 1014–18.CrossRefGoogle Scholar
Gordon, L. G. M. & Haydon, D. A. (1975). Potential-dependent conductances in lipid membranes containing alamethicin. Phil. Trans. R. Soc. Lond. B 270, 433–46.Google ScholarPubMed
Gordon, L. G. M. & Haydon, D. A. (1976). Kinetics and stability of alamethicin conducting channels in lipid bilayers. Biochim. biophys. Acta 436, 541–56.CrossRefGoogle ScholarPubMed
Hagins, W. A. (1965). Electrical signs of information flow in photoreceptors. Cold Spring Harb. Symp. Quant. Biol. 30, 403–18.CrossRefGoogle ScholarPubMed
Hall, J. E. (1975). Toward a molecular understanding of excitability. Alamethicin in black lipid films. Biophys. J. 15, 934–9.CrossRefGoogle Scholar
Heyer, E. J., Muller, R. U. & Finkelstein, A. (1976). Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. II. Inactivation produced by monazomycin transport through the membrane. J. gen. Physiol. 67, 731–48.CrossRefGoogle ScholarPubMed
Hille, B. (1975). Ionic selectivity of Na and K channels in nerve membranes. In Membranes – A Series of Advances. Vol. 3. Dynamic Properties of Lipid Bilayers and Biological Membranes (ed. Eisenman, G.). New York: Marcel Dekker, Inc.Google Scholar
Hladky, S. B. & Haydon, D. A. (1972). Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim. biophys. Acta 274, 294.CrossRefGoogle ScholarPubMed
Hladky, S. B., Gordon, L. G. M. & Haydon, D. A. (1974). Molecular Mechanisms of ion transport in lipid membranes. A. Rev. phys. Chem. 25, 1138.CrossRefGoogle Scholar
Hodgkin, A. L. (1964). The Conduction of the Nervous Impulse. Springfield, Ill.: C. C. Thomas.Google Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., Lond. 117, 550.CrossRefGoogle ScholarPubMed
Hodgkin, A. L., Huxley, A. F. & Katz, B. (1949). Ionic currents underlying activity in the giant axon of the squid. Archs. Sci. Physiol. 3, 129150.Google Scholar
Jain, M. K. (1972). The, Bimolecular Lipid Membrane. New York: Van Nostrand Reinhold.Google Scholar
Jung, G., Konig, W. A., Leibfritz, D., Ooka, T., Janko, K. & Boheim, G. (1976). Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. A. Sequence and conformation Biochim. biophys. Acta 433, 164–81.CrossRefGoogle ScholarPubMed
Katz, B. & Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. 224, 665–99.CrossRefGoogle ScholarPubMed
Keynes, R. D. & Rojas, E.Characteristics of the sodium gating current in the squid giant axon. J. Physiol. 233, 2830.Google Scholar
Kittel, C. (1967). Introduction to Solid State Physics. 3rd ed.New York: John Wiley.Google Scholar
Latoree, R., Alvarez, O., Ehrenstein, G., Espinoza, M. & Reyes, J. (1975). The nature of the voltage-dependent conductance of the hemocyanin channel. J. Membrane Biol. 25, 163–82.CrossRefGoogle Scholar
Latorre, R., Alvarez, O. & Verdugo, P. (1974). Temperature characterization of the conductance of the Excitability Inducing Material Channel in oxidized cholesterol membranes. Biochim. biophys. Acta 367, 361–65.CrossRefGoogle ScholarPubMed
Latorre, R., Ehrenstein, G. & Lecar, H. (1972). Ion transport through excitability-inducing material (ElM) channels in lipid bilayer membranes. J. gen. Physiol. 60, 7285.CrossRefGoogle Scholar
Lauger, P. (1973). Ion transport through pores: A rate-theory analysis. Biochim. biophys. Acta 311, 423–41.CrossRefGoogle Scholar
Lecar, H., Ehrenstein, G. & Latorre, R. (1975). Mechanism for channel gating in excitable bilayers. Ann. N.Y. Acad. Sci. 264, 304–13.CrossRefGoogle ScholarPubMed
Mauro, A., Nanavati, R. P. & Heyer, E. (1972). Time-variant conductance of bilayer membranes treated with monazomycin and alamethicin. Proc. natn. Acad. Sci. U.S.A. 69, 3742.CrossRefGoogle ScholarPubMed
Mueller, P., Rudin, D. O., Tien, H. T. & Wescott, W. C. (1962). Reconstitution of excitable cell membrane structure in vitro. Circulation 26, 1167.CrossRefGoogle Scholar
Mueller, P. & Rudin, D. O. (1968 a). Resting and action potentials in experimental bimolecular lipid membranes. J. theor. Biol. 18, 222.CrossRefGoogle ScholarPubMed
Mueller, P. & Rudin, D. O. (1968 b) Action potentials induced in bimolecular lipid membranes. Nature, Lond. 217, 713.CrossRefGoogle Scholar
Mueller, P. & Rudin, D. O. (1969). Translocators in bimolecular lipid membranes: their role in dissipative and conservative bioenergy transduction. Curr. Top. Bioenerg. 3, 157.CrossRefGoogle Scholar
Mueller, P., Rudin, D. O., Tien, H. T. & Wescott, W. C. (1963). Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. p. 67.Google Scholar
Mueller, P. (1975). Electrical excitability in lipid bilayers and cell membranes. In MTP Int. Rev. Sci. (Biochem. Series One). Vol. 3. Energy Transducing Mechanisms (ed. Racker, E.), pp. 75120. London: Butter-worth.Google Scholar
Muller, R. U. & Finkelstein, A. (1972). Voltage-dependent conductance induced in thin lipid membranes by monazomycin. J. gen. Physiol. 60, 263.CrossRefGoogle ScholarPubMed
Neher, E. & Sakmann, B. (1976). Agonist-induced discrete conductance changes in frog muscle. Biophys. J. 16, 154a.Google Scholar
Rice, S. O. (1954) Mathematical Analysis of Random Noise. Reprinted from Bell Syst. Tech. J. Vols. 23 and 24 in ‘Selected Papers on Noise and Stochastic Processes’ (ed. Wax, N.). New York: Dover.Google Scholar
Roy, G. (1975). Properties of the conductance induced in lecithin bilayer membranes by alamethicin. J. Membrane Biol. 24, 7185.CrossRefGoogle ScholarPubMed
Sachs, F. & Lecar, H. (1973). Acetylcholine noise in tissue culture muscle cells. Nature (New Biol.) 246, 214–16.CrossRefGoogle ScholarPubMed
Siebenga, E., Meyer, A. & Verveen, A. A. (1972). Membrane shot noise in electrically depolarized nodes of Ranvier. Pflügers Arch. ges. Physiol. 341, 97104.Google Scholar
Stenberg, M., Lundstrom, I. & Lundkvist, L. (1975). Voltage distribution across nerve membranes. Nature 255, 496–9.CrossRefGoogle ScholarPubMed
Urry, D. W. (1972). A molecular theory of ion-conducting channels A field-dependent transition between conducting and nonconducting conformations. Proc. Natn. Acad. Sci. U.S.A. 69, 1610–14.CrossRefGoogle Scholar
Urry, D. W., Goodall, M. C., Glickson, J. D. & Mayers, D. F. (1971). The gramicidin A transmembrane channel: Characteristics of head-to- head dimerized π(L, D) helices. Proc. natn. Acad. Sci. U.S.A. 68, 1907–11.CrossRefGoogle ScholarPubMed
Urry, D. W., Long, M. M., Jacobs, M. & Harris, R. D. (1975). Conformations and molecular mechanisms of carriers and channels. Ann. N. Y. Acad. Sci. 264, 203–20.CrossRefGoogle ScholarPubMed
Van Bruggen, E. F. J., Wiebenga, E. H. & Gruber, M. (1962). Structure and properties of hemocyanins. I. Electron Micrographs of hemocyanin and apohemocyanin from Helix pomatia at different pH values. J. molec. Biol. 4, 17.CrossRefGoogle ScholarPubMed
Veatch, W. R., Fossel, E. T. & Blout, E. R. (1974). The conformation of gramicidin A. Biochemistry, N. Y. 13, 5249–56.CrossRefGoogle ScholarPubMed
Wanke, E. & Prestipino, G. (1976). Monazomycin channel noise. Biochim. biophys. Acta 436, 721–6.CrossRefGoogle ScholarPubMed