Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T05:48:30.994Z Has data issue: false hasContentIssue false

Exploiting the light–metal interaction for biomolecular sensing and imaging

Published online by Cambridge University Press:  03 May 2012

Christiane Höppener*
Affiliation:
Institute of Physics, University of Münster, 48149 Münster, Germany
Lukas Novotny
Affiliation:
Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
*
*Author for correspondence: Christiane Höppener, Institute of Physics, University of Münster, 48149 Münster, Germany. Email: christiane.hoeppener@uni-muenster.de

Abstract

The ability of metal surfaces and nanostructures to localize and enhance optical fields is the primary reason for their application in biosensing and imaging. Local field enhancement boosts the signal-to-noise ratio in measurements and provides the possibility of imaging with resolutions significantly better than the diffraction limit. In fluorescence imaging, local field enhancement leads to improved brightness of molecular emission and to higher detection sensitivity and better discrimination. We review the principles of plasmonic fluorescence enhancement and discuss applications ranging from biosensing to bioimaging.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and QDs. Science 271, 93937.CrossRefGoogle Scholar
Alivisatos, A. P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology 22, 4752.CrossRefGoogle ScholarPubMed
Andrew, P. & Barnes, W. L. (2001). Molecular fluorescence above metallic gratings. Physical Review B 88, 21452153.Google Scholar
Anger, P., Bharadwaj, P. & Novotny, L. (2006). Enhancement and quenching of single molecule fluorescence. Physical Review Letters 96, 113002.CrossRefGoogle ScholarPubMed
Ao, L., Gao, F., Pan, B., He, R. & Cui, D. (2006). Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles. Analytical Chemistry 78, 11041106.CrossRefGoogle ScholarPubMed
Ashcroft, N. & Mermin, N. (1976). Solid State Physics. Philadelphia, PA: Saunders College. 19105, HWR International Edition.Google Scholar
Bacia, K., Kim, S. A. & Schwille, P. (2006). Fluorescence crosscorrelation spectroscopy in living cells. Nature Methods 3, 8389.CrossRefGoogle ScholarPubMed
Bardhan, R., Grady, N. K., Cole, J. R., Joshi, A. & Halas, N. J. (2009). Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. Nano 3, 744752.Google ScholarPubMed
Barnes, W. (1998). Fluorescence near interfaces: the role of photonic mode density. Journal of Modern Optics 45, 661699.CrossRefGoogle Scholar
Barnes, W., Dereux, A. & Ebbesen, T. (2003). Surface plasmon subwavelength optics. Nature 424, 824830.CrossRefGoogle ScholarPubMed
Barnes, W. L., Preist, Y. W., Kitson, S. C. & Sambles, J. R. (1996). Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Physical Review B 54, 62276244.CrossRefGoogle ScholarPubMed
Bethe, H. A. (1944). Theory of diffraction by small holes. Physical Review 66, 163182.CrossRefGoogle Scholar
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 19, 16421645.CrossRefGoogle Scholar
Bharadwaj, P., Anger, P. & Novotny, L. (2007). Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18, 044017.CrossRefGoogle Scholar
Bharadwaj, P., Deutsch, B. & Novotny, L. (2009). Optical antennas. Advances in Optics and Photonics 1, 438483.CrossRefGoogle Scholar
Bharadwaj, P. & Novotny, L. (2007). Spectral dependence of single molecule fluorescence enhancement. Optics Express 15, 1426614274.CrossRefGoogle ScholarPubMed
Bharadwaj, P. & Novotny, L. (2010). Plasmon-enhanced photoemission from a single Y3N@C80 fullerene. Journal of Physical Chemistry C 210, 74447447.CrossRefGoogle Scholar
Biteen, J. S., Pacifici, D., Lewis, N. S. & Atwater, H. A. (2005). Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystalnanostructured gold emitters. Nano Letters 5, 17681773.CrossRefGoogle ScholarPubMed
Bohren, C. F. & Huffmann, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley.Google Scholar
Borejdo, J., Gryczynski, Z., Calander, N., Muthu, P. & Gryczynski, I. (2006). Application of surface plasmon coupled emission to study of muscle. Biophysical Journal 91, 26262635.CrossRefGoogle ScholarPubMed
Born, M. & Wolf, E. (1999). Principles of Optics, 7th edn. Oxford: Pergamon.CrossRefGoogle Scholar
Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. (2002). Photothermal imaging of nanometer-sized metal particles among scatterers radiation. Science 297, 11601163.CrossRefGoogle Scholar
Bozhevolnyi, S. I., Volkov, V. S. & Leosson, K. (2002). Localization and waveguiding of surface plasmon polaritons in random nanostructures. Physical Review Letters 89(18), 186801.CrossRefGoogle ScholarPubMed
Braun, D. & Fromherz, P. (1998). Fluorescence interferometry of neuronal cell adhesion on microstructured silicon. Physical Review Letters 81(23), 52415244.CrossRefGoogle Scholar
Bujak, L., Pitkowski, D., Mackowski, S., Wörmke, S., Jung, C., Bräuchle, C., Agarwal, A., Kotov, N. A., Schulte, T., Hofmann, E., Brotosudarmo, T. H. P., Scheer, H., Govorov, A. & Hiller, R. (2009). Plasmon enhancement of fluorescence in single light-harvesting complexes from amphidinium carterae. Acta Physica Polonica A 116, S22S25.CrossRefGoogle Scholar
Burghardt, T. P., Charlesworth, J. E., Halstead, M. F., Tarara, J. E. & Ajtai, K. (2006). In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy. Biophysical Journal 90, 46624671.CrossRefGoogle ScholarPubMed
Cady, N. C., Strickland, A. D. & Batt, C. A. (2007). Optimized linkage and quenching strategies for quantum dot molecular beacons. Molecular and Cellular Probes 21, 116124.CrossRefGoogle ScholarPubMed
Calander, N. (2004). Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Analytical Chemistry 76, 21682173.CrossRefGoogle ScholarPubMed
Carmeli, I., Lieberman, I., Kraversky, L., Fan, Z., Govorov, A. O., Markovich, G. & Richter, S. (2010). Broadband enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Letters 10, 20692074.CrossRefGoogle Scholar
Chance, R. R., Prock, A. & Silbey, R. (1973). Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics 37, 165.Google Scholar
Chance, R. R., Prock, A. & Silbey, R. (1978). Molecular fluorescence and energy transfer near interfaces. In Advances in Chemical Physics, vol. 37 (Prigogine, I. & Rice, S. A.), pp. 165. New York: Wiley.Google Scholar
Chang, Y. R., Lee, H. Y., Chen, K., Chang, C. C., Tsai, D. S., Fu, C. C., Lim, T. S., Tzeng, Y. K., Fang, C. Y., Han, C. C., Chang, H. C. & Fann, W. (2008). Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotechnology 3, 284288.CrossRefGoogle ScholarPubMed
Chaumet, P. C., Rahmani, A., de Fornel, F. & Dufour, J.-P. (1998). Evanescent light scattering: the validity of the dipole approximation. Physical Review B 58, 23102315.CrossRefGoogle Scholar
Chen, Y., ODonoghue, M. B., Huang, Y.-F., Kang, H., Phillips, J. A., Chen, X., Estevez, M. C., Yang, C. J. & Tan, W. (2010). A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. Journal of the American Chemical Society 132, 1655916570.CrossRefGoogle ScholarPubMed
Chen, Y.-M., Cheng, T.-L. & Tseng, W.-L. (2009). Fluorescence turn on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles. Analyst 134, 21062112.CrossRefGoogle ScholarPubMed
Chhabra, R., Sharma, J., Wang, H., Zou, S., Lin, S., Yan, H., Lindsay, S. & Liu, Y. (2009). Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nature Nanotechnology 20, 485201485211.CrossRefGoogle ScholarPubMed
Chowdhury, M. H., Ray, K., Aslan, K., Lakowicz, J. R. & Geddes, C. D. (2007). Metal-enhanced fluorescence of phycobiliproteins from heterogeneous plasmonic nanostructures. Journal of Physical Chemistry C 111, 1885618863.CrossRefGoogle ScholarPubMed
Cohen, L. B. & Salzberg, B. M. (1978). Optical measurement of membrane potential. Reviews of Physiology, Biochemistry and Pharmacology 83, 3588.CrossRefGoogle ScholarPubMed
Cooper, M. A. (2002). Optical biosensors in drug discovery. Nature Reviews 1, 515528.Google ScholarPubMed
Danz, N., Waldhausl, R., Brauer, A. & Kowarschik, R. (2002). Dipole lifetime in stratified media. Optical Society of America B 19, 412419.CrossRefGoogle Scholar
Degiron, A. & Ebbesen, T. W. (2004). Analysis of the transmission process through single apertures surrounded by periodic corrugations. Optics Express 12, 36943700.CrossRefGoogle ScholarPubMed
Degiron, A. & Ebbesen, T. W. (2005). The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. Journal of Optics A:Pure and Applied Optics 7, S90S96.CrossRefGoogle Scholar
Degiron, A., Lezec, H. J., Yamamoto, N. & Ebbesen, T. W. (2004). Optical transmission properties of a single subwavelength aperture in a real metal. Optical Communication 239, 6166.CrossRefGoogle Scholar
Dertinger, T., Colyer, R., Lyer, G., Weiss, S. & Enderlein, J. (2009). Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences USA 106, 2228722292.CrossRefGoogle ScholarPubMed
Drexhage, K. H. (1970). Influence of a dielectric interface on fluorescence decay time. Journal of Luminescence 1/2, 693701.CrossRefGoogle Scholar
Drexhage, K. H. (1974). Interaction of light with monomolecular dye layers. In Progress in Optics, vol. 12 (ed. Wolf, E.), pp. 161232Amsterdam: North Holland.Google Scholar
Drexhage, K. H., Fleck, M., Shafer, F. & Sperling, W. (1966). Beeinflussung der Fluoreszenz eines Europiumchelates durch einen Spiegel. Tbd. Berichte der Bunsengesellschaft für Physikalische Chemie 20, 1176.Google Scholar
Dubertret, B., Calame, M. & Libchaber, A. J. (2001). Single mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology 19, 365370.CrossRefGoogle ScholarPubMed
Dunn, B. (1999). Near-field scanning optical microscopy. Chemical Reviews 99, 28912928.CrossRefGoogle ScholarPubMed
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667669.CrossRefGoogle Scholar
Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhurim, B., Christians, F., Cicero, R., Clark, S., Dalal, R., de Winter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J. & Turner, S. (2009). Real-time DNA sequencing from single polymerase molecules. Science 323, 133138.CrossRefGoogle ScholarPubMed
El-Sayed, I. H., Huang, X. & El-sayed, M. A. (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Letters 5, 829834.CrossRefGoogle ScholarPubMed
El-Sayed, I. H., Huang, X. & El-Sayed, M. A. (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters 239, 129135.CrossRefGoogle ScholarPubMed
Elghanian, R., Storhoff, J. J., Mucic, R., Letsinger, R. L. & Mirkin, C. A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 10781080.CrossRefGoogle ScholarPubMed
Enderlein, J., Ruckstuhl, T. & Seeger, S. (1999). Highly efficient optical detection of surface-generated fluorescence. Applied Optics 38, 724732.CrossRefGoogle ScholarPubMed
Fan, C., Wang, S., Hong, J. W., Bazan, G. C., Plaxco, K. W. & Heeger, A. J. (2003). Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proceedings of the National Academy of Sciences USA 100, 6297–6301.CrossRefGoogle ScholarPubMed
Farahani, J. N., Eisler, H.-J., Pohl, D. W., Pavius, M., Fluckiger, P., Gasser, P. & Hecht, B. (2007). Bow-tie optical antenna probes for single-emitter scanning near-field optical microscope. Nanotechnology 18, 12550611255064.CrossRefGoogle Scholar
Ford, G. W. & Weber, W. H. (1984). Electromagnetic interactions of molecules with metal surfaces. Physics Reports 113, 195287.CrossRefGoogle Scholar
Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. An English translation of Förster's original work is provided by R. S. Knox, Intermolecular energy migration and fluorescence. In Biological Physics (eds. Mielczarek, E., Knox, R. S. & Greenbaum, E.), pp. 148160, New York: American Institute of Physics (1993). Annales de Physik, 2, 5575.Google Scholar
Frey, H. G., Paskarbeit, J. & Anselmetti, D. (2009). Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment. Applied Physics Letters 94, 24111612411163.CrossRefGoogle Scholar
Frey, H. G., Witt, S., Felderer, K. & Guckenberger, R. (2004). High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Physics Review Letters 93, 200801.CrossRefGoogle ScholarPubMed
Fu, Y., Zhang, J. & Lakowicz, J. R. (2008). Metal-enhanced fluorescence of single green fluorescent protein (GFP). Biochemical and Biophysical Research Communications 376, 712717.CrossRefGoogle ScholarPubMed
Furtaw, M. D., Lin, D., Wu, L. & Anderson, J. P. (2009). Near-infrared metal-enhanced fluorescence using a liquid droplet micromixer in a disposable poly(methyl methacrylate) microchip. Plasmonics 4, 273280.CrossRefGoogle Scholar
García-Vidal, F. J., Lezec, H. J., Ebbesen, T. W. & Martín-Moreno, L. (2003a). Multiple paths to enhance optical transmission through a single subwavelength slit. Physics Review Letters 90(21), 213901213904.CrossRefGoogle ScholarPubMed
García-Vidal, F. J., Martín-Moreno, L., Lezec, H. J. & Ebbesen, T. W. (2003b). Focusing light with a single subwavelength aperture flanked by surface corrugations. Applied Physics Letters 83, 45004502.CrossRefGoogle Scholar
Genet, C. & Ebbesen, T. W. (2007). Light in tiny holes. Nature 445, 3946.CrossRefGoogle ScholarPubMed
Gersten, J. I. (2005). Theory of fluorophoremetallic surface interactions. In Topics in Fluorescence Spectroscopy, vol. 8: Radiative Decay Engineering (Geddes, C. D. & Lakowicz, J. R.), pp. 197222. New York: Springer Science+Business Media Inc.Google Scholar
Gerton, J. M., Wade, L. A., Lessard, G. A., Ma, Z. & Quake, S. R. (2004). Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Physics Review Letters 93, 180801180804.CrossRefGoogle ScholarPubMed
Ghosh, S. K., Nath, S., Kundu, S., Esumi, K. & Pal, T. (2004). Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. Journal of Physical Chemistry B 108, 1396313971.CrossRefGoogle Scholar
Goldsby, R. A., Kindt, T. J., Osborne, B. A. & Kuby, J. (2003). Enzyme-linked immunosorbent assay. In Immunology, vol. 5, pp. 148150. London: W. H. Freeman & Co.Google Scholar
Griffin, J. & Ray, P. C. (2008). Gold nanoparticle based NSET for monitoring Mg2+ dependent RNA folding. Journal of Physical Chemistry B 112, 1119911201.CrossRefGoogle ScholarPubMed
Griffin, J., Singh, A. K., Senapati, D., Rhodes, P., Mitchell, K., Robinson, B., Yu, E. & Ray, P. C. (2009). Size- and distance-dependent nanoparticle surface energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. Chemistry– A European Journal 15, 342351.CrossRefGoogle ScholarPubMed
Gu, J.-Q., Shen, J., Sun, L.-D. & Yan, C.-H. (2008). Resonance energy transfer in steady-state and time-decay fluoro-immunoassays for lanthanide nanoparticles based on biotin and avidin affinity. Journal of Physical Chemistry C 112, 65896593.CrossRefGoogle Scholar
Haes, A. J. & Duyne, R. P. V. (2002). A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of American Chemical Society 124, 1059610604.CrossRefGoogle ScholarPubMed
Haes, A. J., Stuart, D. A., Nie, S. & Duyne, R. P. V. (2004). Using solution-phase nanoparticles, surface-conned nanoparticle arrays and single nanoparticles as biological sensing platforms. Journal of Fluorescence 14, 355367.CrossRefGoogle ScholarPubMed
Hanken, D. G., Jordan, C. E., Frey, B. L. & Corn, R. M. (1998). Surface plasmon resonance measurements of ultrathin organic films at electrode surfaces. Electroanalytical Chemistry 20, 141225.Google Scholar
He, R.-Y., Chang, G.-L., Wu, H.-L., Lin, C.-H., Chiu, K.-C., Su, Y.-D. & Chen, S.-J. (2006). Enhanced live cell membrane imaging using surface Plasmon enhanced total internal reflection fluorescence microscopy. Optics Express 14, 93079316.CrossRefGoogle ScholarPubMed
Hecht, B., Sick, B., Wild, U., Deckert, V., Zenobi, R., Martin, O. & Pohl, D. (2000). Scanning near-field optical microscopy with aperture probes: fundamentals and applications. Journal of Chemical Physics 112(18), 77617774.CrossRefGoogle Scholar
Heintzmann, R., Jovin, T. M. & Cremer, C. (2002). Saturated patterned excitation microscopy: a concept for optical resolution improvement. Journal of Optical Society of America 19, 15991609.CrossRefGoogle ScholarPubMed
Hell, S. W. (2007). Far-field optical nanoscopy. Science 316, 11531158.CrossRefGoogle ScholarPubMed
Hemmila, I. & Laitala, V. (2005). Progress in lanthanides as luminescent probes. Journal of Fluorescence 15, 5254.CrossRefGoogle ScholarPubMed
Henry, J. E. A. (2004). Development of a nanoparticle-based surface modified fluorescence assay for the detection of prion proteins. Analytical Biochemistry 334, 18.CrossRefGoogle ScholarPubMed
Herrmann, M., Neuberth, N., Wissler, J., Perez, J., Gradl, D. & Naber, A. (2009). Near field optical study of protein transport kinetics at a single nuclear pore. Nano Letters 9, 33303336.CrossRefGoogle Scholar
Homola, J., Yee, S. & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B 54, 315.CrossRefGoogle Scholar
Höppener, C. & Novotny, L. (2008a). Antenna-based optical imaging of single Ca2+-transmembrane proteins in liquids. Nano Letters 8, 642646.CrossRefGoogle ScholarPubMed
Höppener, C. & Novotny, L. (2008b). Imaging of membrane proteins using antenna-based optical microscopy. Nanotechnology 19, 38401213840128.CrossRefGoogle ScholarPubMed
Höppener, C. & Novotny, L. (2009). Background suppression in near-field optical imaging. Nano Letters 9, 903908.CrossRefGoogle ScholarPubMed
Höppener, C., Siebrasse, J. P., Peters, R., Kubitscheck, U. & Naber, A. (2005). High-resolution near-field optical imaging of single nuclear pore complexes under physiological conditions. Biophysical Journal 88, 36813688.CrossRefGoogle ScholarPubMed
Huang, B., Wang, W., Bates, M. & Zhuang, X. (2008a). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810813.CrossRefGoogle ScholarPubMed
Huang, C.-C., Chiu, S.-H., Huang, Y.-F. & Chang, H.-T. (2007). Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet derived growth factor. Analytical Chemistry 79, 47984804.CrossRefGoogle ScholarPubMed
Huang, X., El-Sayed, I., Qian, W. & El-Sayed, M. (2003). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of American Chemical Society 128, 21152120.Google Scholar
Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. (2008b). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23, 217228.CrossRefGoogle ScholarPubMed
Ishi, T., Fujikata, J. & Ohashi, K. (2005). Large optical transmission through a single subwavelength hole associated with a sharp-apex grating. Japanese Journal of Applied Physics 44, L170L172.CrossRefGoogle Scholar
Ivarsson, B. & Malmqvist, M. (2002). Development and use of biacore instruments for biomolecular interaction analysis. In Biomolecular Sensors (Gizeli, E. & Lowe, C. R.), p. 322. London: Taylor and Francis.Google Scholar
Jähnig, F. (1979). Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proceedings of the National Academy of Sciences USA 76, 63616365.CrossRefGoogle ScholarPubMed
Jain, P. K., Lee, K.-S., El-Sayed, I. H. & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B 110, 72387248.CrossRefGoogle ScholarPubMed
Jelezko, F. & Wachtrup, J. (2006). Single defect centres in diamond: a review. Physica Status Solidi a 203, 32073225.CrossRefGoogle Scholar
Jennings, T. L., Schlatterer, J. C., Singh, M. P., Greenbaum, N. L. & Strouse, G. F. (2006a). NSET molecular beacon analysis of hammerhead RNA substrate binding and catalysis. Nano Letters 6, 13181324.CrossRefGoogle ScholarPubMed
Jennings, T. L., Singh, M. P. & Strouse, G. F. (2006b). Fluorescent lifetime quenching near d=1.5 nm gold nanoparticles: probing NSET validity. Journal of the American Chemical Society 128, 54625467.CrossRefGoogle Scholar
Jin, Y., Li, H. Y. & Bai, J. Y. (2009). Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. Analytical Chemistry 81, 57095715.CrossRefGoogle ScholarPubMed
John, S. (1990). The Localization of Waves in Disordered Media Scattering and Localization of Classical Waves in Random Media. Singapore: World Scientific.Google Scholar
Johnson, P. B. & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B 6, 43704379.CrossRefGoogle Scholar
Karrai, K. & Grober, R. D. (1995). Piezoelectric tip-sample distance control for near field optical microscopes. Applied Physics Letters 66, 18421844.CrossRefGoogle Scholar
Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. Journal of Physical Chemistry B 107, 668677.CrossRefGoogle Scholar
Kim, K., Kim, D. J., Cho, E., Suh, J., Huh, Y. & Kim, D. (2009a). Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells. Nanotechnology 20, 015202.CrossRefGoogle ScholarPubMed
Kim, Y.-P., Oh, Y.-H., Oh, E., Ko, S., Han, M.-K. & Kim, H.-S. (2008). Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Analytical Chemistry 80, 46344641.CrossRefGoogle ScholarPubMed
Kim, Y.-P., Park, S., Oh, E., Oh, Y.-H. & Kim, H.-S. (2009b). On chip detection of protein glycosylation based on energy transfer between nanoparticles. Biosensors and Bioelectronics 24, 11891194.CrossRefGoogle ScholarPubMed
Kleppner, D. (1981). Inhibited spontaneous emission. Physical Review Letters 47, 233.CrossRefGoogle Scholar
Kneipp, J., Kneipp, H., Wittig, B. & Kneipp, K. (2007). One and two photon excited optical pH probing in single cells using surface enhanced Raman and hyper Raman nanosensors. Nano Letters 7, 28192823.CrossRefGoogle Scholar
Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R. & Feld, M. S. (2002). Surface enhanced Raman scattering and biophysics. Journal of Physics C 14, R597R624.Google Scholar
Knoll, W., Philpott, M. R. & Swalen, J. D. (1981). Emission of light from Ag metal gratings coated with dye monolayer assemblies. Journal of Chemical Physics 75, 47954799.CrossRefGoogle Scholar
Koopman, M., Cambi, A., de Bakker, B. I., Joosten, B., Figdor, C. G., van Hulst, N. F. & Garcia-Parajo, M. F. (2004). Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells. FEBS Letters 573, 610.CrossRefGoogle ScholarPubMed
Kreibig, U. & Vollmer, M. (1995). Optical Properties of Metal Clusters. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Krishnan, A., Thio, T. & Kim, T. J. (2001). Evanescently coupled resonance in surface plasmon enhanced transmission. Optical Communications 200, 17.CrossRefGoogle Scholar
Kuhn, H. (1970). Classical aspects of energy transfer in molecular systems. Journal of Chemical Physics 53, 101108.CrossRefGoogle Scholar
Kühn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. (2006). Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Physical Review Letters 97, 017402.CrossRefGoogle Scholar
Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. (2000). Stable solid-state source of single photons. Physical Review Letters 85, 290293.CrossRefGoogle ScholarPubMed
Lakowicz, J. R. (2005). Radiative decay engineering 5: metal enhanced fluorescence and plasmon emission. Analytical Biochemistry 337, 171194.CrossRefGoogle ScholarPubMed
Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy, 3rd edn.New York, USA: Springer Science+Business Media.CrossRefGoogle Scholar
Lauterbach, R., Liu, J., Knoll, W. & Paulsen, H. (2010). Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). Langmuir 26, 1731517321.CrossRefGoogle ScholarPubMed
Lee, J. B., Shai, A. S., Campolongo, M. J., Park, N. & Luo, D. (2010). Three-dimensional structure and thermal stability studies of DNA nanostructures by energy transfer spectroscopy. ChemPhysChem 11, 20812084.CrossRefGoogle ScholarPubMed
Lee, S., Cha, E.-J., Park, K., Lee, S.-Y., Hong, J.-K., Sun, I.-C., Kim, S. Y., Choi, K., Kwon, I. C., Kim, K. & Ahn, C.-H. (2008). A near-infrared- fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angewandte Chemie (International Edition) 47, 28042807.CrossRefGoogle ScholarPubMed
Leutenegger, M., Gösch, M., Perentes, A., Hoffmann, P., Martin, O. J. F. & Lasser, T. (2006). Confining the sampling volume for fluorescence correlation spectroscopy using a sub-wavelength sized aperture. Optical Express 14, 956969.CrossRefGoogle ScholarPubMed
Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G. & Webb, W. W. W. (2003). Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682686.CrossRefGoogle ScholarPubMed
Lezec, H. J., Degiron, A., Devaux, E., Linke, R. A., Martin-Moreno, L., Garcia-Vidal, F. J. & Ebbesen, T. W. (2002). Beaming light from a subwavelength aperture. Science 297, 820822.CrossRefGoogle ScholarPubMed
Li, H. & Rothberg, L. (2004a). Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences USA 101, 1403614039.CrossRefGoogle ScholarPubMed
Li, H. & Rothberg, L. (2004b). DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Analytical Chemistry 76, 54145417.CrossRefGoogle ScholarPubMed
Liang, X., Pan, H. C., Li, Y., Jiang, L. P., Zhang, J. R. & Zhu, J. J. (2009). Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Biosensors and Bioelectronics 24, 36933697.CrossRefGoogle ScholarPubMed
Lichtman, J. W. & Conchello, J.-A. (2005). Fluorescence microscopy. Nature Methods 2, 910919.CrossRefGoogle ScholarPubMed
Liebermann, T. & Knoll, W. (2000). Surface plasmon field enhanced fluorescence spectroscopy. Colloid Surface A 171, 115130.CrossRefGoogle Scholar
Liedberg, B., Nylander, C. & Lundstrom, I. (1983). Surface plasmon resonance for gas-detection and biosensing. Sensors and Actuators 4, 299304.CrossRefGoogle Scholar
Liu, J., Lauterbach, R., Paulsen, H. & Knoll, W. (2008). Immobilization of light-harvesting chlorophyll a/b complex (LHCIIb) studied by surface plasmon field-enhanced fluorescence spectroscopy. Langmuir 24, 96619667.CrossRefGoogle ScholarPubMed
Liu, J., Lee, J. H. & Lu, Y. (2007). Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Analytical Chemistry 79, 41204125.CrossRefGoogle ScholarPubMed
Liu, Y., Mahdavi, F. & Blair, S. (2005). Enhanced fluorescence transduction properties of metallic nanocavity arrays. IEEE Journal of Selected Topics in Quantum Electronics 11, 778784.Google Scholar
Lodahl, P., van Driel, A. F., Nikolaev, I. S., Irman, A., Overgaag, K., Vanmaekelbergh, D. & Vos, W. L. (2004). Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654657.CrossRefGoogle ScholarPubMed
Loo, C. A., Lowery, A., Halas, N. J., West, J. & Drezek, R. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters 5, 709711.CrossRefGoogle ScholarPubMed
Lu, H., Schöps, O., Woggon, U. & Niemeyer, C. M. (2008). Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Journal of American Chemical Society 130, 48154827.CrossRefGoogle ScholarPubMed
Lukosz, W. & Kunz, R. E. (1977a). Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. Journal of Optical Society of America 67, 16151619.CrossRefGoogle Scholar
Lukosz, W. & Kunz, R. E. (1977b). Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power. Journal of Optical Society of America 67, 16071615.CrossRefGoogle Scholar
Mackowski, S., Wörmke, S., Maier, A., Brotosudarmo, T., Harutyunyan, H., Hartschuh, A., Govorov, A., Scheer, H. & Bräuchle, C. (2008). Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Letters 8, 558564.CrossRefGoogle ScholarPubMed
Malicka, J., Gryczynski, I. & Lakowicz, J. R. (2003). DNA hybridization assays using metal enhanced fluorescence. Biochemical and Biophysical Research Communications 306, 213218.CrossRefGoogle ScholarPubMed
Martín-Moreno, L., García-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. (2003). Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Physical Review Letters 90(16), 167401167404.CrossRefGoogle ScholarPubMed
Mason, W. T. (1999). Fluorescent and Luminescent Probes for Biological Activity, 2nd edn. London, England: Academic Press.Google Scholar
Matveeva, E. G., Gryczynski, Z., Malicka, J., Lukomska, J., Makowiec, S., Berndt, K. W., Lakowicz, J. R. & Gryczynski, I. (2005). Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Analytical Biochemistry 344, 116167.CrossRefGoogle ScholarPubMed
Maxwell, D. J., Taylor, J. R. & Nie, S. M. (2002). Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of American Chemical Society 124, 9606.CrossRefGoogle ScholarPubMed
Mayilo, S., Kloster, M. A., Wunderlich, M., Lutich, A., Klar, T. A., Nichtl, A., Kürzinger, K., Stefani, F. D. & Feldmann, J. (2009). Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin. Nano Letters 9, 45584563.CrossRefGoogle Scholar
Mo, Z. H., Yang, X. C., Guo, K. P. & Wen, Z. Y. (2007). A nanogold quenched fluorescence duplex probe for homogeneous DNA detection based on strand displacement.Analytical and Bioanalytical Chemistry 389, 493497.CrossRefGoogle ScholarPubMed
Moal, E. L., Fort, E., Leveque-Fort, S., Cordelieres, F. P., Fontaine-Aupart, M.-P. & Ricolleau, C. (2007). Enhanced fluorescence cell imaging with metal-coated slides. Biophysics Journal 92, 21502161.CrossRefGoogle ScholarPubMed
Moiseev, L., Ünlü, M. S., Swan, A. K., Goldberg, B. B. & Cantor, C. R. (2006). DNA conformation on surfaces measured by fluorescence self-interference. Proceedings of the National Academy of Sciences USA 103, 26232628.CrossRefGoogle ScholarPubMed
Morigaki, K. & Tawa, K. (2006). Vesicle fusion studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophysics Journal 91, 13801387.CrossRefGoogle ScholarPubMed
Naber, A., Maas, H.-J., Razavi, K. & Fischer, U. (1999). Dynamic force distance control suited to various probes for scanning near-field optical microscopy. Review of Scientific Instruments 70(10), 39553961.CrossRefGoogle Scholar
Nieder, J. B., Bittl, R. & Brecht, M. (2010). Fluoreszenzstudien zum Einfluss plasmonischer Wechselwirkungen auf die Funktion eines Proteins. Angewandte Chemie (International Edition) 122, 1041510418.Google Scholar
Novotny, L. (1996). Single molecule fluorescence in inhomogeneous environments. Applied Physics Letters 69, 38063808.CrossRefGoogle Scholar
Novotny, L. (1997). Allowed and forbidden light in near-field optics. I. A single dipolar light source. Journal of Optical Society of America A 14, 91104.CrossRefGoogle Scholar
Novotny, L. & Hecht, B. (2006). Principles of Nano-Optics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Oaewa, S., Karoonuthaisirib, N. & Surareungchaic, W. (2009). Sensitivity enhancement in DNA hybridization assay using gold nanoparticle-labeled two reporting probes. Biosensors and Bioelectronics 25, 435444.CrossRefGoogle Scholar
Oh, E., Hong, M.-Y., Lee, D., Nam, S.-H., Yoon, H. C. & Kim, H.-S. (2005). Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Journal of the American Chemical Society 127, 32703271.CrossRefGoogle ScholarPubMed
Oishi, M., Tamura, A., Nakamura, T. & Nagasaki, Y. (2009). A smart nanoprobe based on fluorescence-quenching PEGylated nanogels containing gold nanoparticles for monitoring the response to cancer therapy.Advanced Functional Materials 19, 827834.CrossRefGoogle Scholar
O'Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. (2004). Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters 209, 171176.CrossRefGoogle ScholarPubMed
Peng, Z. F., Chen, Z. P., Jiang, J. H., Zhang, X. B., Shen, G. L. & Yu, R. Q. (2007). A novel immunoassay based on the dissociation of immunocomplex and fluorescence quenching by gold nanoparticles. Analytica Chimica Acta 583, 4044.CrossRefGoogle ScholarPubMed
Pierrat, S., Hartinger, E., Faiss, S., Janshoff, A. & Sönnichsen, C. (2009). Rotational dynamics of laterally frozen nanoparticles specifically attached to biomembranes. Journal of Physical Chemistry C 113, 1117911183.CrossRefGoogle Scholar
Pockrand, I., Brillante, A. & Möbius, D. (1994). Nonradiative decay of excited molecules near a metal surface. Chemical Physics Letters 69, 499504.CrossRefGoogle Scholar
Pohl, D. W. (4 July 1984). Optical near field scanning microscope. European Patent 0112401 A1.Google Scholar
Popov, E.. M., Neviere, A. L. F. & Bonod, N. (2005). Enhanced transmission of light trough a circularly structured aperture. Applied Optics 44, 68986904.CrossRefGoogle Scholar
Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. (2003). A hybridization model for the plasmon response of complex nanostructures. Science 320, 419422.CrossRefGoogle Scholar
Purcell, E. M. (1946). Spontaneous emission probabilities at radio frequencies. Physical Review 69, 681.Google Scholar
Raschke, G., Kowarik, S., Franzl, T., Sönnichsen, C., Klar, T. A. & Feldmann, J. (2003). Biomolecular recognition based on single gold nanoparticle light scattering. Nano Letters 3, 935938.CrossRefGoogle Scholar
Räther, H. (1988). Surface Plasmons on Smooth and Rough Surfaces and on Gratings, volume 111 of Springer Tracts in Modern Physics. Berlin: Springer.CrossRefGoogle Scholar
Ray, K., Chowdhury, M. H., Zhang, J., Fu, Y., Szmacinski, H., Nowaczyk, K. & Lakowicz, J. R. (2009). Plasmon-controlled fluorescence towards high-sensitivity optical sensing. Advances in Biochemical Engineering/Biotechnology 116, 29727.Google ScholarPubMed
Ray, K., Szmacinski, H., Enderlein, J. & Lakowicz, J. R. (2004). Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films. Applied Physics Letters 90, 25111612511163.Google Scholar
Ray, P. C., Darbha, G. K., Ray, A., Hardy, W. & Walker, J. (2007). A gold-nanoparticle-based fluorescence resonance energy transfer probe for multiplexed hybridization detection: accurate identification of bio-agents DNA. Nanotechnology 18, 375504.CrossRefGoogle Scholar
Rechberger, W., Hohenau, A., Leitner, A., Krenn, J. R., Lamprecht, B. & Aussenegg, F. R. (2003). Optical properties of two interacting gold nanoparticles. Optical Communications 220, 137141.CrossRefGoogle Scholar
Reinhard, B., Sheikholeslami, S., Mastroianni, A., Alivisatos, A. P. & Liphardt, J. (2007). Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proceedings of the National Academy of Sciences USA 104, 26672672.CrossRefGoogle ScholarPubMed
Rigneault, H., Capoulade, J., Dintinger, J., Wenger, J., Bonod, N., Popov, E., Ebbesen, T. W. & Lenne, P.-F. (2005a). Enhancement of single-molecule fluorescence detection in subwavelength apertures. Physical Review Letters 95(11), 117401117404.CrossRefGoogle ScholarPubMed
Rigneault, H., Lemarchand, F. & Sentenac, A. (2000). Dipole radiation into grating structures. Journal of the Optical Society of America A 17, 10481058.CrossRefGoogle ScholarPubMed
Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S. & Mirkin, C. A. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 10271030.CrossRefGoogle ScholarPubMed
Ruckstuhl, T. & Verdes, D. (2004). Supercritical angle fluorescence (SAF) microscopy. Optics Express 12, 42464254.CrossRefGoogle ScholarPubMed
Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A. & Glazer, A. N. (1992). Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Research 20, 28032812.CrossRefGoogle ScholarPubMed
Samiee, K. T., Foquet, M., Guo, L., Cox, E. C. & Craighead, H. G. (2005). Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. Biophysics Journal 88, 21452153.CrossRefGoogle ScholarPubMed
Samiee, K. T., Moran-Mirabal, J. M., Cheung, Y. K. & Craighead, H. G. (2006). Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophysics Journal 90, 32883299.CrossRefGoogle ScholarPubMed
Sanchez, E. J., Novotny, L. & Xie, X. S. (1999). Near-field fluorescence microscopy based on two-photon excitation with metal tips. Physical Review Letters 82 (20), 40144017.CrossRefGoogle Scholar
Sapsford, K. E., Berti, L. & Medintz, I. L. (2006). Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angewandte Chemie (International Edition) 45, 45624589.CrossRefGoogle ScholarPubMed
Schwille, P., Haupts, U., Maiti, S. & Webb, W. (1999). Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two- photon excitation. Biophysical Journal 77, 22512265.CrossRefGoogle ScholarPubMed
Seelig, J., Leslie, K., Renn, A., Kühn, S., Jacobsen, V., van de Corput, M., Wyman, C. & Sandoghdar, V. (2007). Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. Nano Letters 7, 685689.CrossRefGoogle ScholarPubMed
Seferos, D. S., Giljohann, D. A., Hill, H. D., Prigodich, A. E. & Mirkin, C. A. (2007). Nano-flares: Probes for transfection and mRNA detection in living cells. Journal of the American Chemical Society 129, 1547715479.CrossRefGoogle ScholarPubMed
Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E. & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology 22, 15671572.CrossRefGoogle ScholarPubMed
Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. (2005). A guide to choosing fluorescent proteins. Nature Methods 2, 905909.CrossRefGoogle ScholarPubMed
Shang, L., Yin, J., Li, J., Jin, L. & Dong, S. (2009). Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. Biosensors and Bioelectronics 25, 269274.CrossRefGoogle ScholarPubMed
Shimomura, O., Johnson, F. H. & Saiga, Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan aequorea. Journal of Cellular and Comparative Physiology 59, 223239.CrossRefGoogle ScholarPubMed
Simonian, A. L., Good, T. A., Wang, S.-S. & Wild, J. R. (2005). Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Analytica Chimica Acta 534, 6977.CrossRefGoogle Scholar
Singh, M. P., Jennings, T. L. & Strouse, G. F. (2009). Tracking spatial disorder in an optical ruler by time-resolved NSET. Journal of Physical Chemistry B 113, 552558.CrossRefGoogle Scholar
Slavik, J. (1982). Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochimica Biophysica Acta 694, 125.CrossRefGoogle ScholarPubMed
Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R. & Richards-Kortum, R. (2003). Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Research 63, 19992004.Google ScholarPubMed
Souza, G. R., Christianson, D. R., Staquicini, F. I., Ozawa, M. G., Snyder, E. Y. R. L., Sidman, J. H. M., Arap, W. & Pasqualini, R. (2006). Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proceedings of the National Academy of Sciences USA 103, 12151220.CrossRefGoogle ScholarPubMed
Stefani, F. D., Vasilev, K., Bocchio, N., Stoyanova, N. & Kreiter, M. (2005). Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. Physical Review Letters 94, 023005102300514.CrossRefGoogle ScholarPubMed
Suhling, K., Siegel, J., Phillips, D., French, P. M. W., Leveque-Fort, S., Webb, S. E. D. & Davis, D. M. (2002). Imaging the environment of green fluorescent protein. Biophysical Journal 83, 35893595.CrossRefGoogle ScholarPubMed
Sullivan, K. G., King, O., Sigg, C. & Hall, D. G. (1994). Directional, enhanced fluorescence from molecules near a periodic surface. Applied Optics 33, 24472454.CrossRefGoogle Scholar
Sun, C., Wu, X., Ding, H., Zhao, L., Wang, F., Yang, J. & Liu, X. (2009). The fluorescence enhancement of the protein adsorbed on the surface of Ag nanoparticle. Journal of Fluorescence 19, 111117.CrossRefGoogle ScholarPubMed
Svoboda, K. & Block, S. M. (1994). Biological applications of optical forces. Annual Review of Biomolecular Structures 23, 247285.CrossRefGoogle ScholarPubMed
Szmacinski, H., Ray, K. & Lakowicz, J. R. (2009). Metal enhanced fluorescence of tryptophan residues in proteins: application toward label-free bioassays. Analytical Biochemistry 385, 358364.CrossRefGoogle ScholarPubMed
Szmacinski, H., Smith, D., Hanson, M. A., Kostov, Y., Lakowicz, J. R. & Rao, G. (2008). A novel method for monitoring monoclonal antibody production during cell culture. Biotechnology and Bioengineering 100, 448457.CrossRefGoogle ScholarPubMed
Tam, F., Goodrich, G. P., Johnson, B. R. & Halas, N. J. (2007). Plasmonic enhancement of molecular fluorescence. Nano Letters 7, 496501.CrossRefGoogle ScholarPubMed
Taminiau, T. H., Moerland, R. J., Segerink, F. B., Kuipers, L. & van Hulst, N. F. (2007). Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Letters 7, 28.CrossRefGoogle ScholarPubMed
Tang, B., Cao, L. H., Xu, K. H., Zhuo, L. H., Ge, J. H., Li, Q. F. & Yu, L. J. (2008). A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles.Chemistry – A European Journal 14, 36373644.CrossRefGoogle ScholarPubMed
Tang, L., Dong, C. & Ren, J. (2010). Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy. Talanta 81, 15601567.CrossRefGoogle ScholarPubMed
Tsien, R. (1998). The green fluorescent protein. Annual Reviews in Biochemistry 67, 509544.CrossRefGoogle ScholarPubMed
Tsien, R. Y., Ernst, L. & Waggoner, A. (2006). Fluorophores for confocal microscopy: photophysics and photochemistry. In Handbook of biological confocal microscopy (ed. Pawley, J.B.). 3rd edn. pp. 338352.CrossRefGoogle Scholar
van Zanten, T. S., Lopez-Bosque, M. J. & Garcia-Parajo, M. F. (2010). Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna. Small 6, 270275.CrossRefGoogle ScholarPubMed
Verveer, P. J., Wouters, F. S., Reynolds, A. R. & Bastiaens, P. I. H. (2000). Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 15671570.CrossRefGoogle ScholarPubMed
Waggoner, A. (2006). Fluorescent labels for proteomics and genomics. Current Opinion in Chemical Biology 10, 6266.CrossRefGoogle ScholarPubMed
Wang, W., Chen, C., Qian, M. & Zhao, X. S. (2008). Aptamer biosensor for protein detection using gold nanoparticles. Analytical Biochemistry 373, 213219.CrossRefGoogle ScholarPubMed
Weber, W. H. & Eagen, C. F. (1979). Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. Optics Letters 4, 236238.CrossRefGoogle Scholar
Wedge, S. & Barnes, W. L. (2004). Surface plasmon-polariton mediated light emission through thin metal films. Optics Express 12, 36733685.CrossRefGoogle ScholarPubMed
Weissleder, R. A. (2001). Clearer vision for in vivo imaging. Nature Biotechnology 19, 316317.CrossRefGoogle ScholarPubMed
Weller, H. (1998). Quantum size colloids: from size-dependent properties of discrete particles to self-organized superstructures. Current Opinion in Colloid and Interface Science 3, 194199.CrossRefGoogle Scholar
Wenger, J., Conchonaud, F., Dintinger, J., Wawrezinieck, L., Ebbesen, T. M., Rigneault, H., Marguet, D. & Lenne, P. F. (2007). Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophysics Journal 92, 913919.CrossRefGoogle ScholarPubMed
Wenger, J., Gérard, D., Lenne, P.-F., Rigneault, H., Dintinger, J., Ebbesen, T. W., Boned, A., Conchonaud, F. & Marguet, D. (2006a). Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture: towards rapid multicomponent screening at high concentrations. Optics Express 14, 1220612216.CrossRefGoogle Scholar
Wenger, J., Rigneault, H., Dintinger, J., Marguet, D. & Lenne, P. F. (2006b). Single-fluorophore diffusion in a lipid membrane over a subwavelength aperture. Journal of Biological Physics 32, SN1SN4.CrossRefGoogle Scholar
Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R. & Hell, S. W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246249.CrossRefGoogle ScholarPubMed
Willets, K. A. & Duyne, R. P. V. (2007). Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry 58, 267297.CrossRefGoogle ScholarPubMed
Wokaun, A., Lutz, H. P., King, A. P., Wild, U. P. & Ernst, R. R. (1983). Energy transfer in surface enhanced luminescence. Journal of Chemical Physics 79, 509514.CrossRefGoogle Scholar
Wu, Z.-S., Jiang, J.-H., Fu, L., Shen, G.-L. & Yu, R.-Q. (2006). Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Analytical Biochemistry 353, 2229.CrossRefGoogle ScholarPubMed
Xu, C., Zipfel, W., Shear, J. B., Wiliams, R. M. & Webb, W. W. (1996). Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proceedings of the National Academy of Sciences USA 93, 1076310768.CrossRefGoogle ScholarPubMed
Yao, D. F., Kim, J. Y., Scholz, J., Nielsen, P. E., Sinner, E. K. & Knoll, W. (2004). Surface plasmon field-enhanced fluorescence spectroscopy in PCR product analysis by peptide nucleic acid probes. Nucleic Acids Research 32, 177192.CrossRefGoogle ScholarPubMed
Yguerabide, J. & Yguerabide, E. E. (1998). Light scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Analytical Biochemistry 262, 157176.CrossRefGoogle ScholarPubMed
Yokota, H., Saito, K. & Yanagida, T. I. (1998). Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution. Physical Review Letters 80, 46064609.CrossRefGoogle Scholar
You, C.-C., Miranda, O. R., Gilder, B., Ghosh, P. S., Kim, I.-B., Erdogan, B., Krovi, S. A. F. U. H., Bunz, & Rotello, V. M. (2007). Detection and identification of proteins using nanoparticle fluorescent polymer chemical nose sensors. Nanotechnology 2, 318323.Google ScholarPubMed
Yu, L.-B., Lin, D.-Z., Chen, Y.-C., Chang, Y.-C., Huang, K.-T., Liaw, J.-W., Yeh, J.-T., Liu, J.-M., Yeh, C.-S. & Lee, C.-K. (2005). Physical origin of directional beaming emitted from a subwavelength slit. Physical Review B 71(4), 04140510414054.CrossRefGoogle Scholar
Yuk, J. S., Trnavsky, M., McDonagh, C. & MacCraith, B. D. (2010). Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip. Biosensors and Bioelectronics 25, 13441349.CrossRefGoogle ScholarPubMed
Yun, C. S., Javier, A., Jennings, T., Fisher, M., Hira, S., Peterson, S., Hopkins, B., Reich, N. O. & Strouse, G. F. (2005). Nanometal surface energy transfer in optical rulers breaking the FRET barrier. Journal of the American Chemical Society 127, 31153119.CrossRefGoogle ScholarPubMed
Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. (2002). Creating new fluorescent probes for cell biology. National Review 3, 90918.CrossRefGoogle ScholarPubMed
Zhang, J., Wang, L., Zhang, H., Boey, F., Song, S. & Fan, C. (2010). Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6, 201204.CrossRefGoogle ScholarPubMed
Zheng, D., Seferos, D. S., Giljohann, D. A., Patel, P. C. & Mirkin, C. A. (2009). Aptamer nano-flares for molecular detection in living cells. Nano Letters 9, 32583261.CrossRefGoogle ScholarPubMed