Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:46:36.706Z Has data issue: false hasContentIssue false

Fluorescence relaxation spectroscopy in the analysis of macromolecular structure and motion

Published online by Cambridge University Press:  17 March 2009

Rudolf Rigler
Affiliation:
Department of Medical Biophysics, Karolinska Institute, 10401 Stockholm 60, Sweden
Måns Ehrenberg
Affiliation:
Department of Medical Biophysics, Karolinska Institute, 10401 Stockholm 60, Sweden

Extract

Fluorescence spectroscopy offers particularly sensitive tools for the investigation of physical properties of macromolecules in solution. Differences in molecular structure under varying experimental conditions are often reflected in quantum yield and lifetime of natural or synthetically inserted fluorescent probes. inserted fluorescent probes. Energy transfer between fluorescent groups at known places of a primary sequence can be used to measure distances between the label sites (Eisinger, 1976) as well as to investigate their relative motion, e.g. measurements of the kinetics of variations in the end to end distance of a polymer (E. Haas & I. Steinberg, personal communication).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belford, G. G., Belford, R. L. & Weber, G. (1972). Dynamics of fluorescence polarization in macromolecules. Proc. natn. Acad. Sci. U.S.A. 69, 1392.CrossRefGoogle Scholar
Chuang, T. J. & Eisenthal, K. B. (1972). Theory of fluorescence depolarization by anisotropic rotational diffusion. J. Chem. Phys. 57, 5094.CrossRefGoogle Scholar
De, Maeyer L., Gnädig, K., Hendrix, J. & Saleh, B. (1976). Photon correlation spectroscopy of molecular processes in solution. Q. Rev. Biophys. 9, 83.Google Scholar
Ehrenberg, M. (1973). Scalesha, program for non-linear regression. (Unpublished.)Google Scholar
Ehrenberg, M. (1975). Rotational Brownian motion of fluorescence labelled macromolecules. Thesis, Royal Institute of Technology, Stockholm.Google Scholar
Ehrenberg, M. & Rigler, R. (1972). Polarized fluorescence and rotational Brownian motion. Chem. Phys. Letters 14, 539.CrossRefGoogle Scholar
Ehrenberg, M. & Rigler, R. (1974). Rotational Brownian motion and fluorescence intensity fluctuations. Chem. Physics 4, 390.CrossRefGoogle Scholar
Ehrenberg, M. & Rigler, R. (1976). Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules. Q. Rev. Biophys. 9, 69.CrossRefGoogle ScholarPubMed
Ehrenberg, M., Rigler, R. & Wintermeyer, W. (1975). On the structure and conformational dynamics of fluorescence labelled tRNAPheyeast in solution. (To be published.)Google Scholar
Eisinger, J. (1976). Energy transfer and dynamical structure. Q. Rev. Biophys. 9, 21.CrossRefGoogle ScholarPubMed
Favro, L. D. (1960). Theory of the rotational Brownian motion of a free rigid body. Phys. Rev. 119, 63.CrossRefGoogle Scholar
Grinvald, A. & Steinberg, I. Z. (1974). On the analysis of fluorescence decay kinetics by the method of least-squares. Analyt. Biochem. 59, 583.CrossRefGoogle Scholar
Kim, S. H., Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C. & Rich, A. (1974). Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science, N. Y. 185, 435.CrossRefGoogle ScholarPubMed
Kurland, C. G., Rigler, R., Ehrenberg, N. & Blomberg, C. (1975). An allosteric mechanism for codon-dependent tRNA selection on ribosomes. Proc. natn. Acad. Sci. U.S.A. 72, 4248.CrossRefGoogle ScholarPubMed
Marquardt, D. W. (1963). An algorithm for least-squares estimation of non-linear parameters. J. Soc. md. appl. Math. 11, 431.Google Scholar
Meeter, D. A. (1964). Non-linear Least-squares (Gaushaus). University of Wisconsin Computing Center.Google Scholar
Memming, R. (1961). Theorie der Fluoreszenzpolarization für nicht kugelsymmetrische Moleküle. Z. phys. Chem. N.F. 28, 168.CrossRefGoogle Scholar
Perrin, F. (1926). Polarisation de la lumière de fluorescence. Vie moyenne des molecules dans l'état excité. J. Phys. Radium. Paris 7, 390.CrossRefGoogle Scholar
RajBhandary, U L., Chang, S. H., Stuart, A., Faulkner, R. D., Hoskinson, R. M. & Khorana, H. G. (1967). Studies on polynucleotides, LXVIII. The primary structure of yeast phenylalanine transfer RNA. Proc. natn. Acad. Sci. U.S.A. 57, 751.CrossRefGoogle ScholarPubMed
Rigler, R. & Ehrenberg, M. (1973). Molecular interactions and structure as analyzed by fluorescence relaxation spectroscopy. Q. Rev. Biophys. 6, 139.CrossRefGoogle Scholar
Robertus, J. D., Ladner, J. E., Finch, F. T., Rhodes, D., Brown, R. S., Clark, B. F. & Klug, A. (1974). Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature, Lond. 250, 546.CrossRefGoogle ScholarPubMed
Schurr, J. M. (1976). Relaxation of rotational and internal modes of macromolecules determined by dynamic scattering. Q. Rev. Biophys. 9, 109.CrossRefGoogle ScholarPubMed
Wahl, Ph. (1975 a). Fluorescence anisotropy of chromophores rotatingbetween two reflecting barriers. Chem. Physics 7, 210.CrossRefGoogle Scholar
Wahl, Ph. (1975 b). Theoretical determination of decay, quantum yield and anisotropy of chromophores attached to macromolecules and performing a local Brownian motion. Chem. Physics 7, 220.CrossRefGoogle Scholar
Wahl, Ph., Paoletti, J. & LePecq, J. B. (1970). Decay of fluorescence emission anisotropy of the ethidium bromide-DNA complex. Evidence for an internal motion in DNA. Proc. natn. Acad. Sci. U.S.A. 65, 417.CrossRefGoogle Scholar
Wahl, Ph. & Timasheff, S. N. (1969). Polarized fluorescence decay curves for β-lactoglobulin A in various states of association. Biochemistry, N. Y. 8, 2945.CrossRefGoogle ScholarPubMed
Wahl, Ph., Auchet, J. C. & Donzel, B. (1974). The wavelength dependence of the response of a pulse fluorometer using the single photoelectron counting method. Rev. scient. Instrum. 45, 28.CrossRefGoogle Scholar
Wintermeyer, W. & Zachau, H. G. (1971). Replacement of the Y base, dihydro-uracil and 7-methyl-guanine in tRNA by artificial odd bases. FEBS Lett. 18, 214.CrossRefGoogle Scholar
Yguerabide, J. (1972). Nanosecond fluorescence spectroscopy of macromolecules. Meth. Enzym. 26, part C, 498.CrossRefGoogle ScholarPubMed
Yguerabide, J., Epstein, H. F. & Stryer, L. (1970). Segmental flexibility in an antibody molecule. J. molec. Biol. 51, 583.CrossRefGoogle Scholar