Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T07:31:43.716Z Has data issue: false hasContentIssue false

Intracellular studies on transmitter effects on neurones in isolated brain slices

Published online by Cambridge University Press:  17 March 2009

P. Andersen
Affiliation:
Institute of Neurophysiology, University of Oslo, Norway
I. A. Langmoen
Affiliation:
Institute of Neurophysiology, University of Oslo, Norway

Extract

In the study of transmitter mechanisms in the peripheral nervous system and the spinal cord, intracellular recording has been a great advantage. In contrast, studies on central synapses have often used more indirect techniques, often extracellular recording from a cell or a small group of cells. In particular, a large amount of information has been acquired by iontophoretic application of drugs, often with a multibarrel electrode system where the iontophoretic electrodes are coupled to a recording electrode. Because of the difficulties with proper intracellular recording from intact brain preparations, there are relatively few intracellular studies on central transmitter effects. This situation compares unfavourably with the many studies on spinal cord, and, in particular, on peripheral nervous tissue.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alger, B. E. & Nicoll, R. A. (1979). GABA-mediated biphasic inhibitory responses in hippocampus. Nature, Lond. 281, 315317.CrossRefGoogle ScholarPubMed
Allen, G. I., Eccles, J., Nicoll, R. A., Oshima, T. & Rubia, F. J. (1977). The ionic mechanisms concerned in generating the i.p.s.ps of hippocampal pyramidal cells. Proc. R. Soc. B 198, 363384.Google ScholarPubMed
Andersen, P., Bie, B. & Ganes, T. (1980). Distribution of GABA sensitive areas on hippocampal pyramidal cells. Exp. Brain Res. (in the Press).Google Scholar
Andersen, P., Bliss, T. V. P. & Skrede, K. K. (1971). Lamellar organization of hippocampal excitatory pathways. Exp. Brain Res. 13, 222238.CrossRefGoogle Scholar
Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A. & Mosfeldt, Laursen A. (1980). Two different responses of hippocampal pyramidal cells to application of gamma-amino-butyric acid (GABA). J. Physiol. (in the Press).Google Scholar
Ayala, G. F. & Thalmann, R. H. (1979). A biphasic IPSP in pyramidal neurons of hippocampal slices in the presence of pentobarbital. Soc. Neurosci. Abstr. 5, 2476.Google Scholar
Biscoe, T. J. & Straughan, D. W. (1966). Micro-electrophoretic studies of neurones in the cat hippocampus. J. Physiol. (Lond.) 183, 341359.CrossRefGoogle ScholarPubMed
Blackstad, T. W., Fuxe, K. & Hökfelt, T. (1967). Noradrenaline nerve terminals in the hippocampal region of the rat and the guinea pig. Zeitschrift für Zellforsch. 78, 463473.CrossRefGoogle Scholar
Coombs, J. S., Eccles, J. C. & Fatt, P. (1955). The electrical properties of the motoneurone membrane. J. Physiol. Lond. 130, 291325.CrossRefGoogle ScholarPubMed
Curtis, D. R. & Crawford, J. M. (1969). Central synaptic transmission – microelectrophoretic studies. Ann. Rev. Pharmacol. 9, 209240.CrossRefGoogle ScholarPubMed
Curtis, D. R., Felix, D. & McLennan, H. (1970). GABA and hippocampal inhibition. Brit. J. Pharmacol. 40, 881883.CrossRefGoogle ScholarPubMed
Dingledine, R. & Gjerstad, L. (1978). Reduction of postsynaptic inhibition by penicillin in the in vitro hippocampal slice. Soc. Neurosci. Abstr. 4, 141 (Abstr. 424).Google Scholar
Dodd, J., Dingledine, R. & Kelly, J. S. (1978). Intracellular recording from CA3 pyramidal neurones of hippocampal slices and the action of iontophoretic acetyicholine. In lontophoresis and transmitter mechanisms in the mammalian central nervous system (ed. Ryall, R., and Kelly, J. S.,) Amsterdam, New York: Elsevier/North Holland Biomedical Press, 494 pp.Google Scholar
Garthwaite, J., Woodhams, P. L., Collins, M. J. & Balazs, R. (1979). On the preparation of brain slices: morphology and cyclic nucleotides. Brain Res. 173, 373377.CrossRefGoogle ScholarPubMed
Gustafsson, B., Lindström, S. & Takata, M. (1978). Afterhyperpolarization mechanism in the dorsal spinocerebellar tract cells of the cat. J. Physiol. 275, 283301.CrossRefGoogle ScholarPubMed
Hotson, J. R., Prince, D. A. & Schwartzkroin, P. A. (1979). Anomalous inward rectification in hippocampal neurons. J. Neurophysiol. 42, 889895.CrossRefGoogle ScholarPubMed
Krnejević, K., Pumain, R. & Renaud, L. (1971). The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. Lond. 215, 247268.CrossRefGoogle Scholar
Langmoen, I. A., Andersen, P., Gjerstad, L., Mosfeldt, Laursen A. & Ganes, T. (1978). Two separate effects of GABA on hippocampal pyramidal cells in vitro. Acta physiol. scand. 102, 28–29A.Google Scholar
Langmoen, I. A., Segal, M. & Andersen, P. (1980). Mechanisms of norepinephrine actions on hippocampal pyramidal cells in vitro. Submitted to Brain Res.Google Scholar
Lorente de nó, R. (1934). Studies on the structure of the cerebral cortex. II. Continuation of the study of the Ammonic system. J. Physiol. Neurol. (Lpz), 46, 113177.Google Scholar
Ramon Y Cajal, S. (1893). Über die feinere Struktur des Ammonshornes. Z. wiss. Zool. 56, 615663.Google Scholar
Ribak, C. E., Vaughn, J. E. & Saito, K. (1978). Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res. 140, 315332.CrossRefGoogle ScholarPubMed
Schwartzkroin, P. A. & Andersen, P. (1975). Glutamic acid sensitivity of dendrites in hippocampal slices in vitro. In Advances in Neurology, 12 (ed. Kreutzberg, G. W.), p. 4551. Raven Press.Google Scholar
Segal, M. & Bloom, F. E. (1974). The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res. 72, 7997.CrossRefGoogle ScholarPubMed