Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T13:34:18.401Z Has data issue: false hasContentIssue false

The (Na+ +K+) activated enzyme system and its relationship to transport of sodium and potassium

Published online by Cambridge University Press:  17 March 2009

Jens Chr. Skou
Affiliation:
Institute of Physiology, University of Aarhus, Aarhus 8000C, Denmark

Extract

It seems to be the membrane bound (Na++K +)-activated enzyme system which transforms the energy from a hydrolysis of ATP into a vectorial movement of sodium out and potassium into the cell against electrochemical gradients, i.e. this systems seems to be the transport system for sodium and potassium (see, for example, review by Skou, 1972; Hokin & Dahl, 1972).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, R. W. & Koval, G. J. (1972). Sodium-potassium-activatedadenosine triphosphatase. VII. Concurrent inhibition of Na+-K+-adenosine triphosphatase and activation of K+-nitrophenylphosphatase activities. J. bid. Chem. 247, 3088–92.CrossRefGoogle ScholarPubMed
Albers, R. W., Koval, G. & Siegel, G. J. (1968). Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium- activated adenosine triphosphatase. Mol. Pharmacol. 4, 324–36.Google ScholarPubMed
Alexander, D. R. & Rodnight, R. (1970). Separation at neutral pH of a 32P labelled membrane protein associated with the Na+ + Mg2+ ion activated ATPase from ox brain. Biochem. J. II, 44P.CrossRefGoogle Scholar
Baker, P. F. (1964). An efflux of ninhydrin-positive material associated with the operation of the Na+ pump in intact crab nerve immersed in Na+-free solution. Biochim. biophys. Acta 88, 458–60.Google Scholar
Baker, P. F., Foster, R. F., Gilbert, D. S. & Shaw, T. I. (1977). Sodium transport by perfused giant axons of Loligo. J. Physiol., Lond. 219, 487506.CrossRefGoogle Scholar
Banerjee, S. P. & Wong, S. M. E. (1972). Effect of potassium onsodium dependent ADP–ATP exchange activity in kidney microsomes. J. biol. Chem. 247, 5409–13.CrossRefGoogle Scholar
Blostein, R. (1970). Sodium-activated adenosine triphosphatase activity of the erythrocyte membrane. J. biol. Chem. 245, 270–5.CrossRefGoogle ScholarPubMed
Bond, G. H., Bader, H. & Post, R. L. (1971). Acetyl phosphate as a substitute for ATP in (Na+ + K+)-dependent ATPase. Biochim. biophys. Acta 241, 5767.CrossRefGoogle ScholarPubMed
Brinly, F. J. Jr & Mullins, L. J. (1968). Sodium fluxes in internally dialyzed squid axons. J. gen. Physiol. 52, 181211.CrossRefGoogle Scholar
Britten, J. S. & Blank, M. (1968). Thallium activation of the (Na+K+)-activated ATPase of rabbit kidney. Biochim. biophys. Acta 159, 160–6.CrossRefGoogle ScholarPubMed
Caldwell, P. C., Hodgkin, A. L., Keynes, R. D. & Shaw, T. I. (1960). Partial inhibition of the active transport of cations in the giant axons of Loligo. J. Physiol., Lond. 152, 591600.CrossRefGoogle ScholarPubMed
Czerwinski, A., Gitelman, H. T. & Welt, L. G. (1967). A new member of the ATPase family. Am. J. Physiol. 213, 786–92.CrossRefGoogle ScholarPubMed
Erdmann, E. & Schoner, W. (1973). On the stability of the ouabain receptor against physical treatment, hydrolases and SH reagent. Biochim. biophys. Acta 330, 316–24.CrossRefGoogle Scholar
Fafin, S., Koval, G. J. & Albers, R. W. (1966). Sodium-potassium-activated adenosine triphosphatase of Electrophorus, electric organ. I. An associ- ated sodium-activated transphosphorylation. J. biol. Chem. 242, 2882–9.Google Scholar
Fujita, M., Nakao, T., Tashima, Y., Mizuno, N., Nagano, K. & Nakao, M. (1966). Potassium-ion stimulated p nitrophenylphosphatase activity occurring in a highly specific adenosine triphosphatase preparation from rabbit brain. Biochim. biophys. Acta 117, 4253.CrossRefGoogle Scholar
Fukushima, Y. & Tonomura, Y.Two kinds of high energy phosphorylated intermediate, with and without bound ADP, in the reaction of Na+-K+-dependent ATPase. J. biochem., Tokyo 74, 135–42.CrossRefGoogle Scholar
Garay, R. P. & Garrahan, P. J. (1973). The interactions of sodium and potassium with the sodium pump in red cells. J. Physiol., Lond. 231, 297325.CrossRefGoogle ScholarPubMed
Garrahan, P. J. & Garay, R. P. (1974). A kinetic study of the Na pump in red cells. Its relevance to the mechanism of active transport. Ann. N. Y. Acad. Sci. (in the Press).Google Scholar
Garrahan, P. J. & Glynn, I. M. (1967 a). The sensitivity of the sodium pump to external sodium. J. Physiol., Lond. 192, 175188.CrossRefGoogle ScholarPubMed
Garrahan, P. J. & Glynn, I. M. (1967 b). Factors affecting the relative magnitudes of the sodium: potassium and sodium: sodium exchanges catalysed by thesodium pump. J. Physiol., Lond. 192, 189216.CrossRefGoogle ScholarPubMed
Garrahan, P. J. & Glynn, I. M. (1967 c). The stoicheiometry of the sodium pump. J. Physiol., Lond. 192, 217–35.CrossRefGoogle ScholarPubMed
Garrahan, P. J. & Glynn, I. M. (1967 d). The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J. Physiol., Lond. 192, 237–56.CrossRefGoogle ScholarPubMed
Garrahan, P. J., Pouchan, M. I. & Rega, A. F. (1970). Potassium activated phosphatase from human red cells. The effects of adenosine triphosphate. J. Membrane Biol. 3, 2642.CrossRefGoogle ScholarPubMed
Glynn, I. M. (1962). Activation of adenosinetriphosphatase activity in a cell membrane by external potassium and internal sodium. J. Physiol., Lond. 160 1819P.Google Scholar
Glynn, I. M. (1968). Membrane ATPase and cation transport. Br. med. Bull. 24, 165.CrossRefGoogle ScholarPubMed
Glynn, I. M. & Hoffman, J. F. (1971). Nucleotide requirements for sodium&–sodium exchange catalysed by the sodium pump in human red cells. J. Physiol., Lond. 218, 239–56.CrossRefGoogle ScholarPubMed
Glynn, I. M., Hoffman, J. F. & Lew, V. L. (1971). Some ‘partial reactions’ of the sodium pump. Phil. Trans. R. Soc. B 262, 91102.Google Scholar
Glynn, I. M., Karlich, S. J. D., Cavieres, J. D., Ellory, J. C., Lew, V. L. & Jørgensen, P. L. (1974). The effects of an antiserum to Na+, K+-ATPase on the ion-transporting and hydrolytic activities of the enzyme. Ann. N.Y. Acad. Sci. (in the Press).CrossRefGoogle Scholar
Glynn, I. M. & Lew, V. L. (1969). Affinities or apparent affinities of the transport adenosine triphosphatase system. J. gen. Physiol. 54, 289s305s.CrossRefGoogle ScholarPubMed
Glynn, I. M., Lew, V. L. & Lüthi, U. (1970). Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J. Physiol., Lond. 207, 371–91.CrossRefGoogle ScholarPubMed
Goldman, S. S. &smp; Albers, R. W. (1973). Na, K-ATPase of electrophorus electric organ. IX. The role of phospholipids. J. biol. Chem. 248, 867–74.CrossRefGoogle Scholar
Grisham, C. M. & Baenett, R. E. (1973). The role of lipid-phasetransitions in the regulation of the (sodium + potassium) adenosine triphosphatase. Biochemistry, N.Y. 12, 2635–7.CrossRefGoogle ScholarPubMed
Harris, W. E., Swanson, P. D. & Stahl, W. L. (1973). Ouabain binding sites and the Na, K-ATPase of brain microsomal membranes. Biochim. biophys. Acta 298, 680–9.CrossRefGoogle ScholarPubMed
Hart, W. M. & Titus, E. O.(1973) Sulfhydryl groups of Na, K-ATPase. Protection by physiological ligands and exposure by phosphorylation. J. biol. Chem. 248, 4674–81.CrossRefGoogle Scholar
Hegyvary, C. & Post, R. L. (1971). Binding of ATP to Na, K-ATPase. J. biol. Chem. 246, 5234–40.CrossRefGoogle Scholar
Hoffman, J. F. (1962). Cation transport and structure of the red cell plasma membrane. Circulation 26, 1201–13.CrossRefGoogle ScholarPubMed
Hoffman, P. G. & Tosteson, D. C. (1971). Active sodium and potassium transport in high potassium and low potassium sheep red cells. J. gen. Physiol. 58, 438–66.CrossRefGoogle ScholarPubMed
Hokin, L. E. & Dahl, J. L. (1972). The sodium-potassium adenosinetriphosphatase. In Metabolic Transport, vol. vi (ed. Hokin, L. E.), pp. 269315. New York: Academic Press.CrossRefGoogle Scholar
Hokin, L. E., Dane, J. L., Deupree, J. D., Dixon, J. F., Hackney, J. F. & Perdue, F. (1973). Studies on the characterization of Na, K-AT Pase. X. Purification of the enzyme from the rectal gland of Squalus Acanthias. J. biol. Chem. 248, 2593–605.CrossRefGoogle Scholar
Hokin, L. E. & Yopda, A. (1964). Inhibition by diisopropylfluorophosphate of a kidney transport adenosine triphosphatase by phosphorylation of a serine residue. Proc. natn Acad. Sci., U.S.A. 52, 454461.CrossRefGoogle ScholarPubMed
Inturrisi, C. E. & Titus, E. (1970). Ouabain-dependent incorporation of 32P from p nitrophenyl phosphate into a microsomal phosphatase. Mol. Pharmacol. 6, 99107.Google Scholar
Israel, Y. & Titus, E. (1967). A comparison of microsomal (Na++ K+)ATPase with K+-acetylphosphatase. Biochim. biophys. Acta 139, 450–9.CrossRefGoogle ScholarPubMed
Jensen, J. & Nørby, J. G. (1971). On the specificity of the ATP-binding site of (Na+ + K+)-activated ATPase from brain microsomes. Biochim. biophys. Acta 233, 395403.CrossRefGoogle Scholar
Jørgensen, P. L. (1974 a). Isolation and characterization of the components of the sodium pump. Q. Rev. Biophys.CrossRefGoogle Scholar
Jørgensen, P. L. (1974 b). Purification of (Na+ K+)-ATPase from the outer medulla of mammalian kidney after selective removal of membrane components by SDS. Biochim. biophys. Acta 356, 3652.CrossRefGoogle Scholar
Jørgensen, P. L. (1974 c). Estimation of the purity of Na, K-ATPase and of the molecular weight and polypeptide content per enzyme unit in preparations from the outer medulla of rabbit kidney. Biochim. biophys. Acta 356, 5367.CrossRefGoogle Scholar
Kanazawa, T., Saito, M. & Tonomura, Y. (1970). Formation and decomposition of a phosphorylated intermediate in the reaction of Na+ K+ dependent ATPase. J. Biochem., Tokyo 67, 693711.CrossRefGoogle Scholar
Kimelberg, H. K. & Papahadjopoulos, D. (1972). Phospholipid requirements for Na, K-ATPase: Head-group specificity and fatty acid fluidity. Biochim. biophys. Acta 282, 277–92.CrossRefGoogle ScholarPubMed
Koyal, D., Rao, S. N. & Askari, A. (1971). Studies on the partial reactions catalyzed by the (Na++ K+)-activated ATPase. I. Effects of simple anions and nucleoside triphosphates on the alkali-cation specificity of the p nitrophenylphosphatase. Biochim. biophys. Acta 225, 1119.CrossRefGoogle Scholar
Kyte, J. (1971 a). Purification of the sodium and potassium-dependent adenosine triphosphatase from canine renal medula. J. biol. Chem. 246, 4157–65.CrossRefGoogle Scholar
Kyte, J. (1971 b). Phosphorylation of a purified (Na+ + K+) adenosine tnphosphatase. Biochem. biophys. Res. Commun. 43, 1259–65.CrossRefGoogle Scholar
Kyte, J. (1972). Properties of the two polypeptides of sodium- and potassium- dependent adenosine triphosphatase. J. biol. Chem. 247, 7642–9.CrossRefGoogle ScholarPubMed
Lane, L. K., Copenhaver, J. H., Lindenmayer, G. E. & Schwartz, A. (1973). Purification and characterization of and ouabain binding to the transport ATPase from outer medulla of canine kidney. J. biol. Chem. 248, 7197–200.CrossRefGoogle Scholar
Lant, A. F., Priestland, R. N. & Whittam, R. (1970). The coupling of downhill ion movements associated with reversal of the sodium pump in human red cells. J. Physiol., Lond. 207, 291301.CrossRefGoogle ScholarPubMed
Laris, P. C. & Letchworth, P. E. (1962). Cation influence on inorganic phosphate production in human erythrocytes. J. cell comp. Physiol. 60, 229–34.CrossRefGoogle Scholar
Lindermayer, G. E., Laughter, A. H. & Schwartz, A. (1968). Incorporation of inorganic phosphate-32 into a Na+, K+ATPase preparation:stimulation by ouabain. Archs. Biochem. Biophys. 127, 187–92.CrossRefGoogle Scholar
Middleton, M. W. (1970). Kinetics of monovalent ion activation of the (Na++K+)-dependent adenosine triphosphatase and a model for ion translocation and its inhibition by the cardiac glycosides. Archs. Biochem. Biophys. 136, 280–6.CrossRefGoogle Scholar
Mullins, L. J. & Brinley, F. J. Jr. (1969). Potassium fluxes in dialyzed squid axons. J. gen. Physiol. 53, 704–40.CrossRefGoogle ScholarPubMed
Nakajima, S. & Takahashi, K. (1966). Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish. J. Physiol., Land. 187, 105–27.CrossRefGoogle ScholarPubMed
Nakao, T., Nagai, M., Nagai, F., Kawai, K., Fujihira, Y., Hara, Y. & Fujita, M. (1973). Purification and some properties of Na, K-transport ATPase. II. Preparations with high specific activity obtained using aminoethyl cellulose chromatography. J. Biochem., Tokyo 73, 781–91.CrossRefGoogle ScholarPubMed
Neufeld, A. H. & Levy, H. M. (1969). A second ouabain-sensitive sodium- dependent adenosine triphosphatase in brain microsomes. J. biol. Chem. 244, 6493–7.CrossRefGoogle ScholarPubMed
Nørby, J. G. & Jensen, J. (1971). Binding of ATP to brain microsomal ATPase. Determination of the ATP-binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K+concentration.Biochem. biophys. Acta 233, 104–16.CrossRefGoogle ScholarPubMed
Post, R. L., Hegyvary, C. & Kume, S. (1972). Activation by adenosine tn- phosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. biol. Chem. 247, 6530–40.CrossRefGoogle Scholar
Post, R. L. & Kume, S. (1973). Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine tnphosphatase. J. biol. Chem. 248, 69937000.CrossRefGoogle Scholar
Post, R. L., Kume, S., Tobin, T., Orcutt, B. & Sen, A. K. (1969). Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J. gen. Physiol. 54, 306s–26s.CrossRefGoogle ScholarPubMed
Post, R. L., Merritt, C. R., Kinsolving, C. R. & Albright, C. D. (1960). Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. biol. Chem. 235, 1796–802.CrossRefGoogle ScholarPubMed
Post, R. L., Sen, A. K. & Rosenthal, A. S. (1965). A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes. J. biol. Chem. 240, 1437–45.CrossRefGoogle ScholarPubMed
Rega, A. F., Garrahan, P. J. & Pouchan, M. I. (1970). Potassium-activated phosphatase from human red blood cells. The asymmetrical effects of K+, Na+, Mg++ and adenosine triphosphate. J. Membrane Biol. 3, 1425.CrossRefGoogle Scholar
Robinson, J. D. (1967). Kinetic studies on a brain microsomal adenosine triphosphatase. Evidence suggesting conformational changes. Biochemistry, N.Y. 6, 3250–8.CrossRefGoogle ScholarPubMed
Robinson, J. D. (1970). Phosphatase activity stimulated by Na+ plus K+:Implications for the (Na+ plus K+)-dependent adenosine triphosphatase. Archs Biochem. Biophys. 139, 164–71.CrossRefGoogle ScholarPubMed
Robinson, J. D. (1973). Cation sites of the (Na++K+)-dependent ATPase: Mechanisms for Na+-induced changes in K+-affinity of the phosphatase activity. Biochim. biophys. Acta 321, 662–70.CrossRefGoogle Scholar
Roelofson, B. & Deenen, L. L. M. Van (1973). Lipid requirement of membrane-bound ATPase, Studies on human erythrocyte ghosts. Eur. J. Biochem. 40, 245–57.CrossRefGoogle Scholar
Schatzmann, H. J. (1953). Herzglykoside als Hemmstoffe für den activen Kalium und Natrium Transport durch die Erythrocytenmembran. Helv. physiol. pharmac. Acta II, 346–54.Google Scholar
Schatzmann, H. J. (1965). The role of Na+ and K+ in the ouabain-inhibition of the Na++ K+-activated membrane adenosine triphosphatase. Biochim. biophys. Acta 94, 8996.CrossRefGoogle Scholar
Schoner, W., Beusch, R. & Kramer, R. (1968). On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. a. Comparison of nucleotide specificities of Na+- and K+-activated ATPase and Na+dependent phosphorylation of cell membranes. Eur. J. Biochem. 7, 102–10.CrossRefGoogle Scholar
Schwartz, A., Matsui, H. & Laughter, A. H. (1968). Tritiated digoxin binding to (Na+ + K+)-activated adenosine triphosphatase: Possible allosteric site. Science, N.Y. 160, 323–5.CrossRefGoogle Scholar
Sen, A. K. & Post, R. L. (1964). Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the crythrocyte. J. biol. Chem. 239, 345–52.CrossRefGoogle Scholar
Siegel, G. J., Koval, G. J. & Albers, R. W. (1969). Sodium-potassium- activated adenosine triphosphatase. VI. Characterization of the phosphoprotein formed from orthophosphate in the presence of ouabain. J. biol.Chem. 244, 3264–9.CrossRefGoogle Scholar
Simons, T. J. B. (1974). Potassium: potassium exchange catalysed by the sodium pump in human red cells. J. Physiol., Lond. 237, 123–55.CrossRefGoogle ScholarPubMed
Sjodin, R. A. & Baugé, L. A. (1968). Coupling and selectivity of sodium and potassium transport in squid giant axons. J.gen.Physiol. 51, 152s–61s.CrossRefGoogle ScholarPubMed
Skou, I. C. (1957). The influence of some cations on an ATPase from peripheral nerves. Biochim. biophys. Acta 23, 394401.CrossRefGoogle Scholar
Skou, J. C. (1965). Enzymatic basis for active transport of N+ and K+ across cell membrane. Phys. Rev. 45, 596617.Google Scholar
Skou, J. C. (1972). The relationship of the Na, K-activated enzyme system to transport of Na+ and K+ across the cell membrane. Bioenergetics 4, 203–32.Google Scholar
Skou, J. C. (1974 a). Effect of ATP on the intermediary steps of the reaction of the (Na+ K+)-dependent enzyme system. I. Studied by the use of N-ethylmaleimide inhibition as a tool. Biochim. biophys. Acta, 339, 234–45.CrossRefGoogle Scholar
Skou, J. C. (1974 b). Effect of ATP on the intermediary steps of the reaction of the (Na++K+)-dependent enzyme system. II. Effect of a variation in the ATP/Mg2+ ratio. Biochim. biophys. Acta 339, 246–57.CrossRefGoogle Scholar
Skou, J. C. (1974 c). Effect of ATP on the intermediary steps of the reaction of the (Na+ + K+)-dependent enzyme system. III. Effect on the p nitrophenyiphosphatase activity of the system. Biochim. biophys. Acta 339, 258–73.CrossRefGoogle Scholar
Skou, J. C., Butler, K. W. & Hansen, O. (1971). The effect of magnesium, ATP, P1, and sodium on the inhibition of the (Na+ + K+)-activated enzyme system by g strophanthin. Biochim. biophys. Acta 241, 443–61.CrossRefGoogle Scholar
Skou, J. C. & Hilberg, C. (1969). The effect of cations, g strophanthin and oligomycin on the labelling from [32P]-ATP of the (Na+ + K+)-activated enzyme system and the effect of cations and g-strophanthin on the labelling from [32P]-ITP and 32P1. Biochim. biophys. Acta 185, 198219.CrossRefGoogle Scholar
Taniguchi, K. & Iida, S. (1971). The binding of ouabain to Na, K-ATPase treated with phospholipase. Biochim. biophys. Acta 233, 831–3.CrossRefGoogle Scholar
Thomas, R. C. (1969). Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. J. Phynol. (Lond.) 201, 495514.Google Scholar
Thomas, R. C. (1972). Electrogenic sodium pump in nerve and muscle cells. Phys. Rev. 52, 563–94.Google ScholarPubMed
Tobin, T., Baskin, S. I., Akera, T. & Brody, T. M. (1972). Nucleotide specificity of the Na+-stimulated phosphorylation and [3H]-ouabainbinding reactions of (Na+ + K+)-dependent adenosine triphosphatase. Mol. Pharmacol. 8, 256–63.Google Scholar
Uesugi, S., Dulak, N. C., Dixon, J. F., Hexum, T. D., Dahl, J. L., Perdue, J. F. & Hokin, L. E. (1971). Studies on the characterization of Na, K-ATPase. VI. Large scale partial purification and properties of a lubrol-solubilized bovine brain enzyme. J. biol. Chem. 246, 531–43.Google Scholar
Weer, P. De (1970). Effects of intracellular adenosine-5'-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J. gen. Physiol. 56, 583620.CrossRefGoogle ScholarPubMed
Whittam, R. (1962). The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem. J. 84, 110–18.CrossRefGoogle ScholarPubMed
Whittam, R. & Ager, M. E. (1965). The connection between active Cation transport and metabolism in erythrocytes. Biochem. J. 97, 214–27.CrossRefGoogle ScholarPubMed
Yoshida, H., Nagai, K., Ohashi, T. & Nakagawa, Y. (1969). K+-dependent phosphatase activity observed in the presence of both adenosine triphosphate and Na+. Biochim. biophys. Acta 171, 178–85.CrossRefGoogle Scholar