Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T06:10:07.013Z Has data issue: false hasContentIssue false

NMR studies of kinetics in cells and tissues

Published online by Cambridge University Press:  17 March 2009

Kevin M. Brindle
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OXI 3QUU. K.
Iain D. Campbell
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OXI 3QUU. K.

Extract

An exciting aspect of NMR spectroscopy is its ability to monitor, non-invasively, a variety of small molecules in cells and tissues. This leads to the possibility of investigating details of cellular biochemistry previously obscured by separation and purification procedures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alger, J. R., Den Hollander, J. A. & Shulman, R. G. (1982). In vivo phosphorus-31 nuclear magnetic resonance saturation transfer studies of adenosinetriphosphatase kinetics in Saccharomyces cerevisiae. Biochemistry. 21, 29572963.Google Scholar
Alger, J. R. & Shulman, R. G. (1984). NMR studies of enzymic rates in vitro and in vivo by magnetization transfer. Q. Rev. Biophys. 17, 83124.CrossRefGoogle ScholarPubMed
Ashley, D. L. & Goldstein, J. H. (1981). Time dependence of the effect of p-chloromercuribenzoate on erythrocyte water permeability: a pulsed NMR study. J. Membr. Biol. 61, 199209.CrossRefGoogle Scholar
Avison, M. J., Hetherington, H. P. & Shulman, R. G. (1986). Applications of NMR to studies of tissue metabolism. A. Rev. biophys. Chem. 15, 377402.CrossRefGoogle ScholarPubMed
Balaban, R. S. (1984). The application of NMR to the study of cellular physiology. Am. J. Physiol. 246, C 10C 19.CrossRefGoogle Scholar
Belton, P. S. & Ratcliffe, R. G. (1985). NMR and compartmentation in biological tissues. Prog. nucl. magn. Reson. Spectrosc. 17, 241279.CrossRefGoogle Scholar
Bendall, M. R., Den Hollander, J. A., Arias-Mendoza, F., Rothman, D. L., Behar, K. L. & Shulman, R. G. (1985). Application of multi-pulse NMR to observe 13C labelled metabolites in biological systems. Magn. Reson. Med. 2, 5664.CrossRefGoogle Scholar
Blackledge, M., Hayes, D. J., Challis, R. A. J. & Radda, G. K. (1986). One-dimensional rotating-frame imaging of phosphorus-metabolites in vivo. J. magn. Reson. 69, 331.Google Scholar
Bodenhausen, G. & Ernst, R. R. (1982). Direct determination of rate constants of slow dynamic processes of two-dimensional ‘accordion’ spectroscopy in nuclear magnetic resonance. J. Am. chem. Soc. 104, 13041311.CrossRefGoogle Scholar
Boyd, J., Brindle, K. M., Campbell, I. D. & Radda, G. K. (1984). A comparison of one dimensional and two dimensional NMR methods for measuring enzyme catalysed exchange. . magn. Reson. 60, 149155.Google Scholar
Brindle, K. M., Boyd, J., Campbell, I. D., Porteous, R. & Soffe, N. (1982 b). Observation of carbon labelling in cell metabolites using proton spin echo NMR. Biochem. biophys. Res. Comm. 109, 864871.CrossRefGoogle ScholarPubMed
Brindle, K. M., Brown, F. F., Campbell, I. D., Foxall, D. L. & Simpson, R. J. (1982 a). A 1H n.m.r. study of isotope exchange catalysed by glycolytic enzymes in the human erythrocyte. Biochem. J. 208, 583592.CrossRefGoogle ScholarPubMed
Brindle, K. M., Brown, F. F., Campbell, I. D., Grathwohl, G. & Kuchel, P. W. (1979). Application of spin-echo NMR to whole-cell systems: membrane transport. Biochem. J. 180, 3744.CrossRefGoogle ScholarPubMed
Brindle, K. M. & Campbell, I. D. (1984). 1Hydrogen nuclear magnetic resonance studies of cells and tissues. In Biomedical Magnetic Resonance. (eds. James, T. L. and Margulis, A. R.), pp. 243255. San Francisco Radiol. Res. Educ. Found.Google Scholar
Brindle, K. M., Campbell, I. D. & Simpson, R. J. (1982 c). A 1H n.m.r. study of the kinetic properties expressed by glyceraldehyde phosphate dehydrogenase in the intact human erythrocyte. Biochem. J. 208, 583592.CrossRefGoogle ScholarPubMed
Brindle, K. M., Campbell, I. D. & Simpson, R. J. (1986 a). A 1H NMR study of the activity expressed by lactate dehydrogenase in the human erythrocyte. Eur. J. Biochem. 158, 299305.Google Scholar
Brindle, K. M., Fulton, S. M., Kingsman, A. J. & Radda, G. K. (1986 b). 31P NMR saturation transfer measurements of flux between P1 and ATP in yeast cells overproducing phosphoglycerate kinase. Biochem. Soc. Trans. 14, 12651267.CrossRefGoogle Scholar
Brindle, K. & Krikler, S. (1985). 31P-NMR saturation transfer measurements of phosphate consumption in Saccharomyces cerevisiae. Biochim. biophys. Acta 847, 285292.CrossRefGoogle Scholar
Brindle, K. M., Porteous, R. & Campbell, I. D. (1984 a). 1H NMR measurements of enzyme-catalysed 15N exchange. J. magn. Reson. 56, 543547.Google Scholar
Brindle, K. M., Porteous, R. & Radda, G. K. (1984 b). A comparison of 31P-NMR saturation transfer and isotope exchange measurements of creatine kinase kinetics in vitro. Biochim. biophys. Acta 786, 1824.CrossRefGoogle ScholarPubMed
Brindle, K. M. & Radda, G. K. (1985). Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer. Biochim. biophys. Acta 829, 188201.CrossRefGoogle Scholar
Brindle, K. M. & Radda, G. K. (1987). 31P NMR saturation transfer measurements of exchange between P1 and ATP in the reactions catalysed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase in vitro. Biochim. biophys. Acta 928, 4555.CrossRefGoogle Scholar
Brown, F. F. (1983). The effect of compartmental location on the proton of small molecules in cell suspensions: a cellular field gradient model. J. magn. Reson. 54, 385399.Google Scholar
Brown, F. F., Campbell, I. D., Kuchel, P. W. & Rabenstein, D. L. (1977). Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS Lett. 82, 1216.CrossRefGoogle ScholarPubMed
Brown, T. R. & Ogawa, S. (1977). 31P nuclear magnetic resonance kinetic measurements on adenylate kinase. Proc. Natn. Acad. Sci. USA 74, 36273631.CrossRefGoogle Scholar
Brown, T. R., Ugurbil, K. & Shulman, R. G. (1977). 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli. cells. Proc. Natn. Acad. Sci. USA 74, 55515553.CrossRefGoogle ScholarPubMed
Campbell, I. D. & Dobson, C. M. (1979). The application of high resolution NMR to biological systems. Meth. Biochem. Anal. 25, 1133.CrossRefGoogle Scholar
Campbell, I. D., Dobson, C. M., Ratcliffe, R. G. & Williams, R. J. P. (1977). Fourier transform NMR pulse methods for the measurement of slow exchange rates. J. magn. Reson. 29, 397405.Google Scholar
Campbell, S. L., Jones, K. A. & Shulman, R. G. (1985). In vivo. 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange in the yeast Saccharomyces cerevisiae. FEBS Lett. 193, 189193.CrossRefGoogle ScholarPubMed
Campbell-Burk, S. L., Jones, K. A. & Shulman, R. G. (1987). 31P NMR saturation transfer measurements in Saccharomyces cerevisiae:. characterisation of phosphate exchange reactions by iodoacetate inhibition. Biochemistry (in the Press).CrossRefGoogle Scholar
Cohn, M. (1982). 18O and 17O effects on 31P NMR as probes of enzymatic reactions of phosphate compounds. A. Rev. Biophys. Bioengng 11, 2342.CrossRefGoogle ScholarPubMed
Conlon, T. & Outhred, R. (1972). Water diffusion permeability of erythrocytes using an NMR technique. Biochem. biophys. Acta 228, 354361.CrossRefGoogle Scholar
Cortese, J. D., Vidal, J. C., Churchill, P., McIntyre, J. O. & Fleischer, S. (1982). Reactivation of D-hydroxybutyrate dehydrogenase with short chain lecithins. Biochemistry 21, 38993903.CrossRefGoogle Scholar
Cramer, J. A. & Prestegard, J. H. (1977). NMR studies of pH-induced transport of carboxylic acids across phospholipid vesicle membranes. Biochem. biophys. Res. Comm. 75, 295301.Google Scholar
Decani, H., Laughlin, M., Campbell, S. & Shulman, R. G. (1985). Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study. Biochemistry 24, 55105516.CrossRefGoogle Scholar
Den Hollander, J. A., Ugurbil, K., Brown, T. R., Bednar, M., Redfield, C. & Shulman, R. G. (1986 b). Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 25, 203211.CrossRefGoogle ScholarPubMed
Den Hollander, J. A., Ugurbil, K. & Shulman, R. G. (1986 a). 31P and 31C NMR studies of intermediates of aerobic and anaerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 25, 212219.CrossRefGoogle Scholar
Forsen, S. & Hoffman, R. A. (1963). Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. chem. Phys. 39, 28922901.CrossRefGoogle Scholar
Foxall, D. L., Brindle, K. M., Campbell, I. D.. & Simpson, R. J. (1984). The inhibition of Gapdh: in situ. PMR studies. Biochim. biophys. Acta 804, 209215.CrossRefGoogle Scholar
Foxall, D. L. & Cohen, J. S. (1983). NMR studies of perfused cells. J. magn. Reson. 52, 346349.Google Scholar
Foxall, D. L., Cohen, J. S. & Mitchell, J. B. (1986). Continuous perfusion of mammalian cells embedded in agarose gel threads. Expl Cell Res. 154, 521529.CrossRefGoogle Scholar
Freeman, D., Bartlett, S., Radda, G. & Ross, B. (1983). Energetics of sodium transport in the kidney. Saturation transfer 31P-NMR. Biochim. biophys. Acta 762, 325336.CrossRefGoogle ScholarPubMed
Gadian, D. G. (1983). Whole organ metabolism studied by NMR. A. Rev. Biophys. Bioengng 12, 6989.Google Scholar
Gillies, R. J. (1982). The binding site for aldolase and glyceraldehyde phosphate dehydrogenase in erythrocyte membranes. Trends in Biochem. Sci. 7, 4142.CrossRefGoogle Scholar
Gonzalez-Mendez, R., Wemmer, D., Hahn, G., Wade-Jardetzky, N. & Jardetzky, O. (1982). Continuous-flow culture system for mammalian cells. Biochem. biophys. Acta 720, 274280.CrossRefGoogle ScholarPubMed
Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., Van Der Meer, R. & Tager, J. M. (1982). Quantification of the contribution of various steps to the control of mitochondrial respiration. J. biol. Chem. 257, 27542757.CrossRefGoogle Scholar
Gupta, R. K. (1979). Saturation transfer 31P NMR studies of the intact human red blood cell. Biochim. biophys. Acta 586, 189195.CrossRefGoogle Scholar
Gupta, R. & Gupta, P. (1984). NMR studies of intracellular metal ions in intact cells and tissues. Ann. Rev. biophys. Bioengng 13, 221246.CrossRefGoogle ScholarPubMed
Heinrich, R. & RapoportT, A. T, A. (1974). A linear steady state treatment of enzymatic chains. Eur. J. Biochem. 42, 8995.CrossRefGoogle ScholarPubMed
Hetherington, H. P., Avison, M. J. & Shulman, R. G. (1985). 1H homonuclear editing of rat brain using semiselective pulses. Proc. Natn. Acad. Sci. USA 82, 31153118.Google Scholar
Hore, P. J. (1983). Solvent suppression in Fourier transform NMR. J. magn. Res. 55, 283300.Google Scholar
Jeener, J., Meier, B. H., Bachman, P. & Ernst, R. R. (1979). Investigation of exchange processes by two dimensional NMR spectroscopy. J. chem. Phys. 71, 45464553.CrossRefGoogle Scholar
Jue, T., Arias-Mendoza, F., Gonnella, N. C., Shulman, G. I. & Shulman, R. G. (1985). A 1H NMR technique for observing metabolite signals in the spectrum of perfused liver. Proc. Natn. Acad. Sci. USA 82, 52465249.CrossRefGoogle ScholarPubMed
Kacser, H. & Burns, J. A. (1973). The control of flux. Symp. Soc. exp. Biol. 27, 65104.Google ScholarPubMed
Kacser, H. & Burns, J. A. (1979). Molecular democracy: who shares the controls? Biochem. Soc. Trans. 7, 11491160.CrossRefGoogle ScholarPubMed
Kantor, H. L., Ferretti, J. A. & Balaban, R. S. (1984). Kinetics of creatine phosphokinase and adenylate kinase. A two-dimensional NMR analysis. Biochim. biophys. Acta 789, 128135.CrossRefGoogle ScholarPubMed
Karczmar, G. S., Koretsky, A. P., Bissell, M. J., Klein, M. P. & Weiner, M. W. (1983). A device for maintaining viable cells at high cell densities for NMR studies. J. magn. Reson. 53, 123128.Google Scholar
King, G. F. & Kuchel, P. W. (1985). Assimilation of γ-glutamyl-peptides by human erythrocytes: a possible means of glutamate supply for glutathione synthesis. Biochem. J. 227, 833842.Google Scholar
King, G. F., Middlehurst, C. R. & Kuchel, P. W. (1986). Direct evidence that prolidase is specific for the trans isomer of imidodipeptide substrates. Biochemistry 25, 10541062.Google Scholar
King, G. F., York, M. J., Chapman, B. E. & Kuchel, P. W. (1983). Proton NMR spectroscopic studies of dipeptidase in human erythrocytes. Biochem. biophys. Res. Comm. 110, 305312.CrossRefGoogle ScholarPubMed
Kingsley-Hickman, P., Sako, E. Y., Andreone, P. A., St. Cyr, J. A., Michurski, S., Foker, J. E., From, A. H. L., Petein, M. & Ugurbil, K. (1986). 31P NMR measurement of ATP synthesis rate in perfused rat hearts. FEBS Lett. 198, 159163.CrossRefGoogle Scholar
Kirk, K. & Kuchel, P. W. (1986). Equilibrium exchange of dimethylphosphonate across the human red cell membrane using NMR spin transfer. J. magn. Reson. 68, 311318.Google Scholar
Kliman, J. A. & Steck, T. L. (1980). Association of glyceraldehyde-3-phosphate dehydrogenase with the human red cell membrane. J. biol. Chem. 255, 63146321.CrossRefGoogle ScholarPubMed
Koretsky, A. P., Basus, V. J., James, T. L., Klein, M. P. & Weiner, M. W. (1985). Detection of exchange reactions involving small metabolite pools using NMR magnetization transfer techniques: relevance to subcellular compartmentation of creatine kinase. Magn. Reson. Med. 2, 586594.CrossRefGoogle ScholarPubMed
Kupriyanov, V. V., Steinschneider, A. YA., Ruuge, E. K., Kapel'ko, V. I., Zueva, M. Yu., Lakomkin, V. L., Smirnov, V. N. & Saks, V. A. (1984). Regulation of energy flux through the creatine kinase reaction in vitro and in the perfused rat heart. 31P NMR studies. Biochim. biophys. Acta 805, 319331.CrossRefGoogle Scholar
La Noue, K., Jeffries, F. M. H. & Radda, G. K. (1987). Kinetic control of mitochondrial ATP synthesis. Biochemistry (in the Press).Google Scholar
Matthews, P. M., Bland, J. L., Gadian, D. G. & Radda, G. K. (1981). The steady state rate of ATP synthesis in the perfused rat heart measured by 31P NMR saturation transfer. Biochem. biophys. Res. Commun. 103, 10521059.CrossRefGoogle ScholarPubMed
Matthews, P. M., Bland, J. L., Gadian, D. G. & Radda, G. K. (1982). A 31P-NMR saturation transfer study of the regulation of the creatine kinase reaction in the rat heart. Biochim. biophys. Acta 721, 312320.CrossRefGoogle ScholarPubMed
Mendz, G. I., Robinson, G. & Kuchel, P. W. (1986). Direct quantitative analysis of enzyme-catalysed reactions by two-dimensional nuclear magnetic resonance spectroscopy: adenylate kinase and phosphoglyceromutase. J. Am. chem. Soc. 108, 169173.Google Scholar
Meyer, R. A., Brown, T. R., Krilowicz, B. L. & Kushmerick, M. J. (1986). Phosphagen and intracellular pH changes during contraction of creatine depleted rat muscle. Am. J. Physiol. 250. C 264C 274.CrossRefGoogle ScholarPubMed
Meyer, R. A., Sweeney, H. L. & Kushmerick, M. J. (1984). A simple analysis of the ‘phosphocreatine shuttle’. Am. J. Physiol. 246, C 365C 377.CrossRefGoogle ScholarPubMed
Morrison, J. F. & Cleland, W. W. (1966). Isotope exchange studies of the mechanism of the reaction catalysed by adenosine triphosphate: creatine phosphotransferase. J. biol. Chem. 241, 673683.Google Scholar
Nunnally, R. L. & Hollis, D. P. (1979). Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry 18, 36423646.CrossRefGoogle ScholarPubMed
Oxley, S. T., Porteous, R., Brindle, K. M., Boyd, J. & Campbell, I. D. (1984). A multinuclear NMR study of 2, 3-bisphosphoglycerate metabolism in the human erythrocyte. Biochim. biophys. Acta 80s, 1924.CrossRefGoogle Scholar
Paul, H.-H., Brindle, K. M., Campbell, I. D. & Smith, D. J. (1983). Proton NMR measurements of hydrogen exchange at the C-3 position of 3-hydroxybutyrate dehydrogenase in suspensions of rat liver mitochondria. FEBS Lett. 163, 185188.CrossRefGoogle ScholarPubMed
Perry, S., McAuliffe, J., Balschi, J., Hickey, P. & Ingwall, J. (1986). Flux through the creatine kinase reaction: the role of mitochondrial creatine kinase.Abstracts Society of Magnetic Resonance in Medicine, 5th Annual Meeting,Montreal.Google Scholar
Radda, G. K. (1986). The use of NMR spectroscopy for understanding disease. Science 233, 640645.Google Scholar
Reibstein, D., Den Hollander, J. A., Pilkis, S. J. & Shulman, R. G. (1986). Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis. Biochemistry 25, 219227.CrossRefGoogle ScholarPubMed
Rich, G. T., Dawson, A. P. & Pryor, J. S. (1984). Glyceraldehyde-3-phosphate dehydrogenase release from erythrocytes during haemolysis. Biochem. J. 221, 197202.Google Scholar
Roberts, J. K. M., Wemmer, D. & Jardetzky, O. (1984). Measurement of mitochondrial ATPase activity in maize root tips by saturation transfer 31P nuclear magnetic resonance. Pl Physiol. 74, 632639.Google Scholar
Robinson, R. S., Roberts, A. J. & Campbell, I. D. (1987). Photo-oxidation effects on β-hydroxybutyrate dehydrogenase: studies of membrane fragments and intact mitochondria. Photochem. Photobiol. 45, 231234.CrossRefGoogle ScholarPubMed
Rothman, D. L., Behar, K. L., Hetherington, H. P. & Shulman, R. C. (1984). 1H-observe/ 13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc. Natn. Acad. Sci. USA 82, 16331637.CrossRefGoogle Scholar
Scott, A. J. & Baxter, R. L. (1981). Applications of 13C NMR to metabolic studies. A. Rev. biophys. Bioeng 10, 151174.CrossRefGoogle ScholarPubMed
Shoubridge, E. A., Bland, J. L. & Radda, G. K. (1984). Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle. Biochim. biophys. Acta 805, 7278.CrossRefGoogle ScholarPubMed
Shoubridge, E. A., Challiss, R. A. J., Hayes, D. J. & Radda, G. K. (1985). Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue β-guanidinoproprionic acid. Biochem. J. 232, 125131.CrossRefGoogle Scholar
Shoubridge, E. A., Jeffry, F. M. H., Keogh, J. M., Radda, G. K. & Seymour, A.-M. L. (1985). Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue β-guanidinoproprionic acid. Biochim. biophys. Acta 847, 2532.CrossRefGoogle Scholar
Shoubridge, E. A. & Radda, G. K. (1984). A 31P-nuclear magnetic resonance study of skeletal muscle metabolism in rats depleted of creatine with the analogue β-guanidinoproprionic acid. Biochim. biophys. Acta 805, 7988.CrossRefGoogle Scholar
Sillerud, L. O., Alger, J. R. & Shulman, R. G. (1981). High resolution proton NMR studies of intracellular metabolites in yeast using 13C decoupling. J. magn. Reson. 45, 142145.Google Scholar
Silverstein, E. & Boyer, P. D. (1964). Equilibrium reaction rates and the mechanisms of bovine heart and rabbit muscle lactate dehydrogenase. J. biol. Chem. 239, 39013907.CrossRefGoogle Scholar
Simpson, R. J., Brindle, K. M., Brown, F. F., Foxall, D. L. & Campbell, I. D. (1982 b). A p.m.r. isotope-exchange method for studying the kinetic properties of dehydrogenases in intact cells. Biochem. J. 202, 573579.CrossRefGoogle ScholarPubMed
Simpson, R. J., Brindle, K. M., Brown, F. F., Foxall, D. L. & Campbell, I. D. (1982 c). Studies of lactate dehydrogenase in the purified state and in intact erythrocytes. Biochem. J. 202, 581587.CrossRefGoogle ScholarPubMed
Simpson, R. J., Brindle, K. M. & Campbell, I. D. (1982 a). Spin echo proton NMR studies of malate and fumarate in human erythrocytes. Biochim. biophys. Acta 707, 191200.CrossRefGoogle Scholar
Thorburn, D. R. & Kuchel, P. W. (1985). Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. Eur. J. Biochem. 150, 371386.CrossRefGoogle ScholarPubMed
Ugurbil, K., Guernsey, D. L., Brown, T. R., Glynn, P., Tobkes, N. & Edelman, I. S. (1981). 31P NMR studies of intact anchorage-dependent mouse embryo fibroblasts. Proc. Natn. Acad. Sci. USA 78, 48434847.CrossRefGoogle ScholarPubMed
Ugurbil, K., Petein, M., Maidan, R., Michurski, S. & From, A. H. L. (1986). Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction. Biochemistry 25, 100107.CrossRefGoogle ScholarPubMed
Walsh, K. & Koshland, D. E. (1985). Characterization of rate controlling steps in vivo by use of an adjustable expression vector. Proc. Natn. Acad. Sci. USA 82, 35773581.CrossRefGoogle ScholarPubMed
Williams, S. R., Gadian, D. G. & Proctor, E. (1986). A method for lactate detection in vivo by spectral editing without the need for double irradiation. J. magn. Reson. 66, 562567.Google Scholar
Williamson, D. H., Lund, P. & Krebs, H. A. (1967). The redox state of free nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514527.CrossRefGoogle ScholarPubMed
Zweier, J. L. & Jacobus, W. E. (1986). Cardiac metabolic and contractile consequences of creatine depletion induced by β-guanidinobutyric acid feeding.Abstracts Society of Magnetic Resonance in Medicine, 5th Annual Meeting,Montreal.Google Scholar