Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T12:48:49.614Z Has data issue: false hasContentIssue false

Non-linear transport behaviour in very thin membranes

Published online by Cambridge University Press:  17 March 2009

R. Schlögl
Affiliation:
Max-Planck-Institut für Biophysik, Frankfurt a.M., Germany

Extract

It appears questionable whether the thermodynamics of irreversible processes can be applied formally in a simple way to the transport of matter or energy across very thin membranes such as lipid bilayers. This is because a thin layer probably cannot be described in a strict thermodynamical sense as a continuous phase.

Type
Articles
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Davson, H. & Danielli, J. F. (1943). The Permeability of Natural Membranes. Cambridge University Press.Google Scholar
Helfferich, F. (1959). Ionenaustauscher. Weinheim: Verlag Chemie.Google Scholar
Kedem, O. & Katchalsky, A. (1958). Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. biophys. Acta 27, 229–46.CrossRefGoogle ScholarPubMed
Kuhn, W. (1951). Grenze der Durchlässigkeit von Filtrier- und Löslichkeitsmembranen. Z. Elektrochem. 55, 207–17.Google Scholar
Parlin, R. B. & Eyring, H. (1954). Membrane permeability and electrical potential. In Ion Transport across Membranes, pp. 103–18. Ed. Clarke, H. T. and Nachmansohn, D.. New York: Academic Press.CrossRefGoogle Scholar
Schlögl, R. (1964). Stofftransport durch Membranen. Darmstadt: Steinkopff-Verlag.Google Scholar
Schlögl, R. (1966). Membrane permeation in systems far from equilibrium. Ber. Bunsen Ges. phys. Chem. 70, 400–14.CrossRefGoogle Scholar
Teorell, T. (1951). Zur quantitativen Behandlung der Membranpermeabilität. Z. Elektrochem. 55, 460–9.Google Scholar