Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T07:41:05.183Z Has data issue: false hasContentIssue false

Photoreversibly photochromic pigments in organisms: properties and role in biological light perception

Published online by Cambridge University Press:  17 March 2009

L. O. Björn
Affiliation:
Department of Plant Physiology, University of Lund, Fack, S-220 07 Lund, Sweden

Extract

The two best-known photophysiological processes are photosynthesis and vision. In photosynthesis light energy is absorbed and transformed into ‘life energy’, in vision the information content of light is utilized by organsims. In photosynthesis chlorophyll and other pigments involved in light-gathering are not chemically changed (except that some of the chlorophyll or phaeophytin molecules are oxidized and immediately reduced again). In human vision the rhodopsin and other visual pigments undergo a reaction cycle induced by photon absorption. The pigment is brought back to its original state only after a long chain of chemical reactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Björn, G. S. (1978). Phycochrome d, a new photochromic pigment from the blue-green alga. Tolypothrix distorta. Physiol. Plant. 42, 321323.CrossRefGoogle Scholar
Björn, G. S. & Björn, L. O. (1976). Photochromic pigments from blue-green algae: Phycochromes a, b, and c. Physiol. Plant. 36, 297304.CrossRefGoogle Scholar
Björn, G. S. & Björn, L. O. (1978). Action spectra for conversions of phycochrome c from Nostoc muscorum. Physiol. Plant. 43, 195200.CrossRefGoogle Scholar
Bogorad, L. (1976). Phycobiliproteins and complementary chromatic adaptation. A. Rev. Pl. Physiol. 26, 369401.CrossRefGoogle Scholar
Borthwick, H. A., Hendricks, S. B., Parker, M. W., Toole, E. H. & Toole, V. K. (1952). A reversible photoreaction controlling seed germination. Proc. natn. Acad. Sci. U.S.A. 38, 662666.CrossRefGoogle ScholarPubMed
Burke, M. J., Pratt, D. C. & Moscowitz, A. (1972). Low-temperature absorption and circular dichroism studies of phytochrome. Biochemistry, N. Y. II, 40254031.CrossRefGoogle Scholar
Butler, W. L., Siegelman, H. W. & Miller, C. O. (1964). Denaturation of phytochrome. Biochemistry, N. Y. 3, 851857.CrossRefGoogle ScholarPubMed
Carroll, J. W., Thomas, J., Dunaway, C. & O'Kelley, J. C. (1970). Light induced synchronization of algae species that divide preferentially in darkness. Photochem. & Photobiol. 12, 9198.CrossRefGoogle Scholar
Chae, Q. & Song, P. -S. (1975). Linear dichroic spectra and fluorescence polarization of biliverdin. J. Am. Chem. Soc. 97, 41764179.CrossRefGoogle ScholarPubMed
Correll, D. L., Edwards, J. L. & Shropshire, W. Jr (1977). Phytochrome. A Bibliography with Author, Biological Materials, Taxonomic, and subject Indexes of Publications Prior to 1975. Washington, D.C.: Smithsonian Institution Press. ISBN: 0–87474−840−2.Google Scholar
Diakoff, S. & Scheibe, J. (1973). Action spectra for chromatic adaptation in Tolypothrix tenuis. Pl. Physiol. 51, 382385.CrossRefGoogle ScholarPubMed
Diakoff, S. & Scheibe, J. (1975). Cultivation in the dark of the blue-green alga Fremyella diplosiphon. A photo-reversible effect of green and red light on growth rate. Physiol. Plant. 34, 125128.CrossRefGoogle Scholar
Dorscheid, T. & Wartenberg, A. (1966). Chlorophyll als photoreceptor bei der Schwachlicht-Bewegung des Mesotaenium-Chloroplasten. Planta. 70, 187192.CrossRefGoogle Scholar
Dring, M. J. (1976). Phytochrome in red alga, Porphyra tenera. Nature, Lond. 215, 1411412.Google Scholar
Dring, M. J. (1976 a). Effects of daylength on growth and reproduction of the conchocelis phase of Porphyra tenera. J. mar. biol. Ass. U.K. 47, 501510.CrossRefGoogle Scholar
Durant, J. P., Spratling, L. & O'Kelley, J. C. (1968). A study of light intensity, periodicity, and wavelength on zoospore production by Protosiphon botryoides Klebs. Jnl Phycol. 4, 356362.CrossRefGoogle ScholarPubMed
Eldred, W. D. & Nolte, J. (1978). Pineal photoreceptors: Evidence for a vertebrate visual pigment with two physiologically active states. Vision Res. 18, 2932.CrossRefGoogle ScholarPubMed
Forward, R. B. Jr (1973). Phototaxis in a dinoflagellate: action spectra as evidence for a two-pigment system. Planta III, 167178.CrossRefGoogle Scholar
Forward, R. B. Jr & Davenport, D. (1968). Red and far-red light effects on short-term behavioral response of a dinoflagellate. Science N. Y. 161, 10281029.CrossRefGoogle ScholarPubMed
Fujita, Y. & Hattori, A. (1962). Photochemical interconversion between precursors of phycobilin chromoprotein in Tolypothrix tenuis. Pl. Cell Physiol. 3, 209220.Google Scholar
Gendel, S., Miller, J. S., Ohad, I. & Bogorad, L. (1978). Control of phycoerythrin synthesis during chromatic adaptation in the cyanophyte Fremyella diplosiphon. Abstract, 6th Ann. Meet. Am. Soc. Photobiol., p. 52.Google Scholar
Giles, K. L. (1970). The phytochrome system, phenolic compounds, and aplanospore formation in a lichenized strain of Trebouxia. Can. J. Bot. 48, 13411346.CrossRefGoogle Scholar
Hartmann, K. M. (1962). Die Regulation der Gametogemese von Chlamydomonos eugametos und Chlamydomonas moewussi durch exogene und endogene Faktoren vergleichend morphologische, physiologische und biophysikalische Untersuchungen. Phd. thesis, University of Tübingen, Germany.Google Scholar
Hartmann, K. M. (1966). A general hypothesis to interpret ‘High energy phenomena’ of photomorphogenesis on the basis of phytochrome Photochem. & Photobiol. 5, 349366.CrossRefGoogle Scholar
Haupt, W. (1959) Die Chloroplastendrehung bei Mougeotia I. Über den quantitativen und qualitativen Lichtbedarf der Schwachlichtbewegung. Planta 53, 484501.CrossRefGoogle Scholar
Haupt, W. (1972). Localization of phytochrome within the cell. In Phytochrome (ed. Mitrakos, K. and Shropshire, W. Jr), pp. 553569. Academic Press.Google Scholar
Haupt, W. & Theile, R. (1961). Chloroplastenbewegung bei Mesotaenium. Planta 56, 388401.CrossRefGoogle Scholar
Haury, J. F. & Bogorad, L. (1977). Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte, Fremyella diplosiphon. Pl. Physiol. 60, 853–839.CrossRefGoogle Scholar
Ingold, C. T. (1968). Fruiting in Sphaerobolus: an effect of yellow light reversed by blue. Nature, Lond. 219, 1264.CrossRefGoogle ScholarPubMed
Kendrick, R. E. & Frankland, B. (1976). Phytochrome and Plant Growth. London: Arnold. ISBN: 0–7131−2561−6Google Scholar
Klein, G., Grombein, S. & Rüdiger, W. (1977). Structure and protein linkage of the phytochrome chromophore. Hoppe-Seyler's Z. physiol. Chem. 358, 10771079.Google ScholarPubMed
Kumagai, T. (1978). Mycochrome system and condial development in certain Fungi imperfecti. Photochem. & Photobiol. 27, 371379.CrossRefGoogle Scholar
Kumagai, T. & Oda, Y. (1973) Blue and near ultraviolet reversible photo-reaction with intracellular particulate fraction of the fungus, Alternaria tomato. Pl. Cell Physiol. 14, 11071112.Google Scholar
Lazaroff, N. (1973). Photomorphogenesis and Nostocacean development. In Biology of Blue-green Algae (Botanical Monographs, vol.9), (ed. Carr, N. G. and Whitton, B A.), pp. 279319. Oxford: Blackwell Scientific Publications.Google Scholar
Lazaroff, N. & Schiff, J. (1962). Action spectrum for developmental photo-induction of the blue-green alga Nostoc muscorum. Science, N. Y. 137, 603604.CrossRefGoogle ScholarPubMed
Leach, C. M. & Trione, E. J. (1965). An action spectrum for light induced sporulation in the fungus Ascochyta pisi. Pl. Physiol. 40, 808812.CrossRefGoogle ScholarPubMed
Leach, C. M. & Trione, E. J. (1966). Action spectra for light induced sporulation of the fungi Pleospora herbarum and Alternaria dauci. Photochem. & Photobiol. 5, 621630.CrossRefGoogle Scholar
Lipps, M. J. (1973). The determination of the far-red effect in marine phytoplankton. Jnl Phycol. 9, 237242.Google Scholar
Lukens, R. J. (1965). Reversal by red light of blue light inhibition of sporulation in Alternaria solani. Phytopathol. 55, 1032.Google Scholar
Marmé, D. (1977). Phytochromes: membranes as possible sites of primary action. A. Rev. Pl. Physiol. 28, 173222.CrossRefGoogle Scholar
Minke, B., Hochstein, S. & Hillman, P. (1973). Antagonistic process as a source of visible-light suppression of after potential in Limulus u.v. photoreceptors. J. gen. Physiol. 62, 787791.CrossRefGoogle Scholar
Minke, B. & Kirschfeld, K. (1978). Microspectrophotometric evidence for two photo-interconvertible states of visual pigment in the barnacle lateral eye. J. gen. Physiol. 71, 3745.CrossRefGoogle Scholar
Nagata, Y. (1973). Rhizoid differentiation in Spirogyra. II. Photoreversibility of rhizoid induction by red and far red light. Pl. Cell Physiol. 14, 545554.Google Scholar
Nolte, J. & Brown, J. E. (1972). Ultraviolet induced sensitivity to visible light in ultraviolet receptors of Limulus. J. gen. Physiol. 59, 186200.CrossRefGoogle ScholarPubMed
Ohki, K. & Fujita, Y. (1978). Photocontrol of phycoerythrin formation in the blue-green alga Tolypothrix tenuis growing in the dark. Pl. Cell Physiol. 19, 715.Google Scholar
O'Kelley, J. C., Durant, J. P. & Stockdale, D. R. (1974). Blue and green light effects, and their photoreversibility, upon zoospore production and the synchronized cycle in Protosiphon botryoides Klebs. Photochem. & Photobiol. 20, 4753.CrossRefGoogle Scholar
O'Kelley, J. C. & Hardman, J. K. (1977). A blue light reaction involving flavin nucleotides and plastocyanin from Protosiphon botryoides. Photochem & Photobiol. 25, 559564.CrossRefGoogle Scholar
Oku, T. & Tomita, G. (1975). The reversible photoconversion of Chenopodium chlorophyll protein and its control by the apoprotein structure. Pl. Cell Physiol. 16, 10091016.CrossRefGoogle Scholar
Rayport, S. & Wald, G. (1978). Frog skin photoreceptors. Abstract, 6th Ann. Meet. Am. Soc. Photobiol. p. 94.Google Scholar
Rentschler, H. -G. (1967). Photoperiodische Induction der Monosporenbildung bei Porphyra tenera Kjellm. (Rhodophyta: Bangiophyceae). Planta (Berl.) 76, 6574.CrossRefGoogle ScholarPubMed
Rethy, R. (1968). Red (R), far-red (FR) photoreversible effects on the growth of Chara sporelings. Z. Pflanzenphysiol. 59, 100102.Google Scholar
Richardson, W. N. (1970). Studies in the photobiology of Bangia fuscopurpurea. J. Phycol. 6, 216219.CrossRefGoogle Scholar
Robinson, B. L. & Miller, J. N.Photomorphogenesis in the blue-green alga Nostoc commune 584. Physiol. Plant. 23, 461472.CrossRefGoogle Scholar
Scheibe, J. (1962). Photoreversible pigment: occurrence in a blue-green alga. Science, N.Y. 176, 10371039.CrossRefGoogle Scholar
Schopfer, P. (1977). Phytochrome control of enzymes. A. Rev. Pl. Physiol. 28, 223330.CrossRefGoogle Scholar
Scheer, H. & Kufer, W. (1977). Studies on plant bile pigments. IV. Conformational studies on C-phycocyanin from Spirulina platensis. Z. Naturf. 32 c, 513519.CrossRefGoogle Scholar
Shropshire, W. Jr, Klein, W. H. & Elstad, V. B. (1961). Action spectra of photomorphogenic induction and photoinactivation of germination in Arabidopsis thaliana. Pl. Cell Physiol. 2, 63–69.Google Scholar
Smith, H. (1975). Phytochrome and Photomorphogenesis. London: McGraw-Hill, ISBN: 0–07−084038−5.Google Scholar
Stavenga, D. G., Flokstra, J. H. & Kuiper, J. W. (1978). Photopigment conversions expressed in pupil mechanism of blowfly visual sense cells. Nature, Lond. 253, 740742.CrossRefGoogle Scholar
Takatori, S. & Imahori, K. (1971). Light reactions in the control of zoospore germination of Chara delicatula. Phycologia 10, 221228.CrossRefGoogle Scholar
Taylor, A. O. & Bonner, B.A. (1976). Isolation of phytochrome from the alga Mesotaenium and liverwort Sphaerocarpus. Pl. Physiol. 42, 762766.CrossRefGoogle Scholar
Thomas, J. P. & O'Kelley, J. C. (1973). The photoreversible nature of a pigment system in the green alga Protosiphon botryoides Klebs. Photochem. & Photobiol. 17, 469472.CrossRefGoogle Scholar
Thomas, J. P., O'Kelley, J. C., Hardmann, J. K. & Aldridge, E. F. (1975). Flavin as an active ccmponent of the photoreversible pigment system of the green alga Protosiphon botryoides Klebs. Photochem. & Photobiol. 22, 135138.CrossRefGoogle Scholar
Van, der Velde H. H. & Hemrika-Wagner, A. M. (1978). The detection of phytochrome in the red alga Acrochaetium daviesii. Plant Sci. Lett. 11, 145149.Google Scholar
Virgin, H. I. (1978). Inhibition of etiolation in Spirogyra by phytochrome. Physiol. Plant. 44, 241245.CrossRefGoogle Scholar
Vince-Prue, D. (1975). Photoperiodism in Plants. Maidenhead (Berkshire): McGraw-Hill. ISBN: 0–07–084048−2.Google Scholar
Vogelmann, T. C. & Scheibe, J. (1978). Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143, 233239.CrossRefGoogle ScholarPubMed
Yakushiji, E., Uchino, K., Sugimura, Y., Shiratori, I. & Takamiya, F. (1963). Isolation of water soluble chlorophyll protein from the leaves of Chenopodium album. Biochim. biophys. Acta 75, 293298.CrossRefGoogle ScholarPubMed
Yamamura, S., Kumagai, T. & Oda, Y. (1978). Mycochrome system and conidial development in a nonphotoinduced isolate of Helminthosporium oryzae. Can. J. Bot. 56, 206208.CrossRefGoogle Scholar