Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:44:06.259Z Has data issue: false hasContentIssue false

RNA structure

Published online by Cambridge University Press:  17 March 2009

Neville R. Kallenbach
Affiliation:
Department of Biology, University of Pennsylvania, Philadelphia, Pa. 19104
Helen M. Berman
Affiliation:
The Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pa. 19111

Abstract

This review is concerned primarily with the physical structure and changes in the structure of RNA molecules. It will be evident that we have not attempted comprehensive coverage of what amounts to a vast literature. We have tried to stay away from particular areas that have been recently reviewed elsewhere. Citations to and information from them are included, however, so that access to the literature is available. Much of what we treat in depth deals with the crystal structures and solution behaviour of model RNA compounds, including synthetic polymers and molecular fragments such as dinucleoside phosphates. Sequence data on natural RNA are cited, but not in detail. Similarly, apart from tRNA, natural RNAs the structural determinations of which are presently not so far advanced, are not dwelt upon. We have tried to present in detail the available structural data with scaled drawings that permit facile comparisons of molecular geometries.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achter, E. K. & Felsenfeld, G. (1971). The conformation of single-strand polynucleotides in solution: Sedimentation studies of apurinic acid. Biopolymers 10, 1625–34.CrossRefGoogle ScholarPubMed
Agris, P. F., Fujiwara, F. G., Schmidt, C. F. & Loeppky, R. N. (1975). Utilization of an E. coli mutant for C-13 enrichment of tRNA. Nucl. Acids Res. 2, 1503–12.CrossRefGoogle Scholar
Air, G. M., Blackburn, E. H., Sanger, F. & Coulson, A. R. (1975). The nucleotide and amino acid sequences of the N(5′) terminal region of gene C of bacteriophage ϕX174. J. molec. Biol. 96, 703–19.CrossRefGoogle Scholar
Akasaka, K., Yamada, A. & Hatano, H. (1975). pH dependence of 31P magnetic resonance spectra of homopolyribonucleotides. FEBS Lett. 53, 339–41.CrossRefGoogle Scholar
Altona, C. (1975). Backbone conformation of several dinucleoside mono-phosphates in solution deduced from Fourier transform NMR spectroscopy at 270 MHz. In Structure and Conformation of Nucleic Acids and Protein Nucleic Acid Interactions (ed. Sundaralingam, M. and Rao, S. T.), pp. 613–29. Baltimore: University Park Press.Google Scholar
Altona, C. & Sundaralingam, M. (1972). Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J. Am. chem. Soc. 94, 8205–12.CrossRefGoogle ScholarPubMed
Altona, C. & Sundaralingam, M. (1973). Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. J. Am. chem. Soc. 95, 2333–44.CrossRefGoogle ScholarPubMed
Altona, C., Van, Boom J. H., De Jager, J. R., Koeners, H. J. & van Binst, G. (1974). Conformational analysis of N6-methyladenylyl-uridine. Nature, Lond. 247, 558–61.CrossRefGoogle ScholarPubMed
Appleby, D. W. & Kallenbach, N. R. (1973). Theory of oligonucleotide stabilization. I. The effect of single-strand stacking. Biopolymers 12, 20932120.CrossRefGoogle ScholarPubMed
Applequist, J. & Damle, V. (1965). Thermodynamics of the helix-coil equilibrium in oligoadenylic acid from hypochromicity studies. J. Am. chem. Soc. 87, 1450–8.CrossRefGoogle Scholar
Applequist, J. & Damle, V. (1966). Thermodynamics of the one-stranded helix-coil equilibrium in polyadenylic acid. J. Am. chem. Phys. 88, 3895–900.Google ScholarPubMed
Araco, A., Belli, M., Giorgi, C. & Onori, G. (1975). The secondary structure of Escherichia coli ribosomes and ribosomal RNA's: a spectrophotometric approach. Nucl. Acid Res. 2, 373–82.CrossRefGoogle ScholarPubMed
Armanath, V. & Broom, A. D. (1976). Polynucleotides containing thiopurines: Synthesis and properties of poiy (s6G). Biochemistry, N.Y. 15, 4386–90.CrossRefGoogle Scholar
Arnott, S. (1971). The structure of transfer RNA. Prog. Biophys. & molec. Biol. 22, 181213.CrossRefGoogle Scholar
Arnott, S. & Bond, P. J. (1973 a). Triple-stranded polynucleotide helix containing only purine bases. Science, N.Y. 181, 68–9.CrossRefGoogle ScholarPubMed
Arnott, S. & Bond, P. J. (1973 b). Structures for poly(U). poly(A). poly(U). triple stranded polynucleotides. Nature New Biol. 244, 99101.CrossRefGoogle Scholar
Arnott, S., Bond, P. J., Selsing, E. & Smith, P. J. C. (1976 a). Models of triple-stranded polynucleotides with optimised stereochemistry. Nucl. Acids Res. 3, 2459–70.CrossRefGoogle ScholarPubMed
Arnott, S., Chandrasekaran, R. & Leslie, A. G. W. (1976 b). Structure of the single-stranded polyribonucleotide polycytidylic acid. J. molec. Biol. 106, 735–48.CrossRefGoogle ScholarPubMed
Arnott, S., Chandrasekaran, R. & Marttila, C. M. (1974). Structures for polyinosinic acid and polyguanylic acid. Biochem. J. 141, 537–43.CrossRefGoogle ScholarPubMed
Arnott, S., Chandrasekaran, R. & Selsing, E. (1975). The variety of polynucleotide helices. In Structure and Conformation of Nucleic Acids and Protein Nucleic Acid Interactions (ed. Sundaralingam, M. and Rao, S. T.), p. 577. Baltimore: University Park Press.Google Scholar
Arnott, S., Dover, S. D. & Wonacott, A. J. (1969). Least squares refinement of the crystal and molecular structures of DNA and RNA from X-ray and standard bond lengths and angles. Acta crystallogr. B 25, 2192–206.CrossRefGoogle Scholar
Arnott, S., Fuller, W., Hodgson, A. & Prutton, I. (1968). Molecular conformations and structure transitions of RNA. Complementary helices and their possible biological significance. Nature, Lond. 220, 561–4.CrossRefGoogle ScholarPubMed
Arnott, S. & Hukins, D. W. L. (1972). The dimensions and shapes of the furanose rings in nucleic acids. Biochem. J. 130, 453–65.CrossRefGoogle ScholarPubMed
Arnott, S., Hukins, D. W. L. & Dover, S. D. (1972). Optimised parameters for RNA double-helices. Biochem. biophys. Res. Comm. 48, 1392–9.CrossRefGoogle ScholarPubMed
Arnott, S., Hukins, D. W. L., Dover, S. D., Fuller, W. & Hodgson, A. R. (1973). Structures of synthetic polynucleotides in the A-RNA and A′ RNA conformations: X-ray diffraction analyses of the molecular conformations of polyadenylic acids polyuridylic acid and polyinosinic acids polycytidylic acid. J. molec. Biol. 81, 107–22.CrossRefGoogle Scholar
Arnott, S., Hutchinson, F., Spencer, M., Wilkins, M. H. F., Fuller, W. & Langridge, R. (1966). X-ray diffraction studies of double helical ribonucleic acid. Nature, Lond. 211, 227–32.CrossRefGoogle ScholarPubMed
Arnott, S., Wilkins, M. H. F., Fuller, W. & Langridge, R. (1967 a). Molecular and Crystal structures of double helical RNA. II. Determination and comparison of diffracted intensities for the α and β crystalline forms of reovirus RNA and their interpretation in terms of groups of three RNA molecules. J. molec. Biol. 27, 525–33.CrossRefGoogle ScholarPubMed
Arnott, S., Wilkins, M. H. F., Fuller, W. & Langridge, R. (1967 b). Molecular and crystal structures of double-helical RNA. III. An u-fold molecular model and comparison of the agreement between the observed and calculated three-dimensional diffraction data for 10- and11-fold models. J. molec. Biol. 27, 535–48.CrossRefGoogle Scholar
Arnott, S., Wilkins, M. H. F., Fuller, W., Venable, J. H. & Langridge, R. (1967 c). Molecular and crystal structures of double-helical RNA. IV. Molecular packing in crystalline fibres. J. molec. Biol. 27, 549–62.CrossRefGoogle ScholarPubMed
Arter, D. B. & Schmidt, P. G. (1976). Ring current effects in nucleic acid double helices. Nucl. Acids Res. 3, 1437–48.CrossRefGoogle ScholarPubMed
Arter, D. B., Walker, G. C., Uhlenbeck, O. C. & Schmidt, P. G. (1974). PMR of the self complementary oligoribonucleotide CpCpGpG. Biochem. biophys. Res. Comm. 61, 1089–94.CrossRefGoogle ScholarPubMed
Aubert, M., Scott, J. F., Reynier, M. & Monier, R. (1968). Rearrangement of the conformation of Escherichia coli 5 s RNA. Proc. natn. Acad. Sci. U.S.A. 61, 292–9.CrossRefGoogle Scholar
Bähr, W., Faerber, P. & Scheit, K-H. (1973). Effects of thioketo substitution upon uracil adenine interactions in polyribonucleotides. Eur. J. Biochem. 33, 535–44.CrossRefGoogle ScholarPubMed
Barbieri, M., Pettazzoni, P., Bersani, F. & Maraldi, N. M. (1970). Isolation of ribosome microcrystals. J. molec. Biol. 54, 121–24.CrossRefGoogle ScholarPubMed
Barrell, R. & Clark, B. C. (1938). Handbook of Nucleic Acid Sequences. Oxford: Joynson—Bruyvers.Google Scholar
Bawden, F. C. & Pirie, N. W. (1938). A plant virus preparation in a fully crystalline state. Nature, Lond. 141, 513–14.CrossRefGoogle Scholar
Benhamou, J. & Jordan, B. R. (1976). Nucleotide sequence of Drosophila melanogaster 5 S RNA: evidence for a general 5 S RNA model. FEBS Lett. 62, 146–49.CrossRefGoogle Scholar
Bennet, G. N., Schweingruber, M. E., Brown, G. D., Squires, C. & Yanofsky, C. (1976). Nucleotide sequence of region preceding trp mRNA initiation site and its role in promotor and operator function. Proc. natn. Acad. Sci. U.S.A. 73, 2361–5.Google Scholar
Beres, L. & Lucas-Lenard, J. (1973). Studies on the fluorescence of the Y base of yeast phenylalanine tRNA. Effect of pH, aminoacylation and interaction with elongation factor T. Biochemistry, N.Y. 12, 39984002CrossRefGoogle Scholar
Bernal, J. D. & Fankuchen, I. (1941). X-ray and crystallographic studies of plant virus preparations. I: Introduction and preparation of specimens. II: Modes of aggregation of the virus particles. J. gen. Physiol. 25, 111–65.CrossRefGoogle ScholarPubMed
Bernal, J. D., Fankuchen, I. & Riley, D. P. (1938). Structure of the crystals of tomato bushy stunt virus preparations. Nature, Lond. 142 1075.CrossRefGoogle Scholar
Bina-Stein, M. & Crothers, D. M. (1974). Conformational changes of transfer ribonucleic acid. The pH phase diagram under acidic conditions. Biochemistry, N.Y. 13, 2771–75.CrossRefGoogle Scholar
Bina-Stein, M. & Crothers, D. M. (1975). Localization of the structure change induced in tRNAfmet (E. coli) by acidic pH. Biochemistry, N.Y. 14, 4185–91.CrossRefGoogle Scholar
Bina-Stein, M., Crothers, D. M., Hilbers, C. W. & Shulman, R. G. (1976). Physical studies of denatured tRNA2Glu from E. coil. Proc. natn. Acad. Sci. U.S.A. 73, 2216–20.CrossRefGoogle Scholar
Bina-Stein, M. & Stein, A. (1976). Allosteric interpretation of Mg2+ binding to the denatured E. coil tRNA2Glu. Biochemistry, N.Y. 15, 3912–24.CrossRefGoogle Scholar
Bobst, A. M., Rottman, F. & Cerutti, P. A. (1969). Effect of the methylation of the 2'-OH groups in poly(A) on its structure in weakly acidic and neutral solutions and on its capability to form ordered complexes with poly(U). J. molec. Biol. 46, 221–34.CrossRefGoogle Scholar
Bolton, P. H., Jones, C. R., Bastedo-Lerner, D., Wong, K. L. & Kearns, D. R. (1976). Quantitative determination of the number of secondary and tertiary structure base pairs in tRNA in solution. Biochemistry, N.Y. 15, 4370–76.CrossRefGoogle ScholarPubMed
Bonen, L. & Doolittle, W. F. (1976). Partial sequences of 16 S rRNA and the phylogeny of blue green algae and chloroplasts. Nature, Lond. 261, 669–73.CrossRefGoogle Scholar
Borer, P. N., Dengler, B., Tinoco, I., & Uhlenbeck, O. C. (1974). Stability of RNA double stranded helices. J. molec. Biol. 86, 843–53.CrossRefGoogle ScholarPubMed
Borer, P. N., Kan, L. S. & Ts'o, P. O. P. (1975). Conformation and interaction of short nucleic acid double-stranded helices. I. PMR studies on the nonexchangeable protons of ribosyl ApApGpCpUpU. Biochemistry, N.Y. 14, 4847–63.CrossRefGoogle ScholarPubMed
Brahms, J., Michelson, A. M. & van Holde, K. E. (1966). Adenylate oligomers in single- and double-strand conformation. J. molec. Biol. 15, 467–88.CrossRefGoogle ScholarPubMed
Branlant, C., SriWidada, J., Krol, A., Fellner, P. & Ebel, J. P. (1975). Nucleotide sequences of the T1 and pancreatic ribonuclease digestion products from some large fragments of the 23 S RNA of E. coli. Biochemie 57, 175225.CrossRefGoogle Scholar
Branlant, C., SriWidada, J., Krol, A. & Ebel, J. P. (1976). Extensions of the known sequences at the 3′ and 5′ ends of 23 S rRNA from E. coli, possible base pairing between these 23 S RNA regions and 16 S rRNA. Nucl. Acids Res. 3, 1671–87.CrossRefGoogle Scholar
Brawerman, G. (1975). Characteristics and significance of the poly(A) sequence in mammalian mRNA. Prog. nucleic Acid Res. & molec. Biol. 17, 118–48.Google Scholar
Breslauer, K. J., Sturtevant, J. M. & Tinoco, I. Jr, (1975). Calorimetric and spectroscopic investigation of the helix to coil transition of a ribo oligonucleotide rA7U7. J. molec. Biol. 99, 549–65.CrossRefGoogle ScholarPubMed
Broom, A. D. & Armanath, V. (1976). Polyribonucleotides containing thiopurines: synthesis and properties. Biochem. biophys. Res. Commun. 70, 1029–34.CrossRefGoogle ScholarPubMed
Broom, A. D., Uchic, M. E. & Uchic, J. T. (1976). Combined enzymatic and chemical approaches to the synthesis of unique polyribonucleotides. Biochim. biophys. Acta 425, 278–86.CrossRefGoogle Scholar
Brown, R. A. (1966). Effect of solution composition upon poly U. Archs Biochem. Biophys. 115, 102–07.Google Scholar
Brown, E. B. & Peticolas, W. L. (1967). Conformational geometry and vibrational frequencies of nucleic acid chains. Biopolymers 14, 1259–71.CrossRefGoogle Scholar
Brownlee, G. G. & Sanger, F. (1969). Chromatography of 32P-labelled oligonucleotides on thin layers of DEAE-cellulose. Eur. J. Biochem. II, 395–99.CrossRefGoogle Scholar
Broyde, S. B., Wartell, R. M., Stellman, S. D., Hingerty, B. & Langridge, R. (1975). Classical potential energy calculations for ApA, CpC, GpG and UpU. The influence of bases on RNA subunit conformations. Biopolymers 14, 1597–613.CrossRefGoogle ScholarPubMed
Byers, B. (1967). Structure and formation of ribosome crystals in hypothermic chick embryo cells. J. molec. Biol. 26, 155–67.CrossRefGoogle ScholarPubMed
Byers, B. (1971). Chick embryo ribosome crystals: analysis of bonding and functional activity in vitro. Proc. natn. Acad. Sci. U.S.A. 68, 440–4.CrossRefGoogle ScholarPubMed
Caron, M., Brisson, N. & Dugas, H. (1976). Evidence for a conformational charge in tRNAphe upon aminoacylation. J. biol. Chem. 251, 1529–30.CrossRefGoogle ScholarPubMed
Caron, M. & Dugas, H. (1976). I. Specific spin labelling of tRNA molecules. II. A spin label study of the thermal unfolding of secondary and tertiary structure in E. coli transfer RNAs. Nucl. Acids Res. 3, 1934, 3447.CrossRefGoogle Scholar
Carré, D. S., Thomas, G. & Favre, A. (1974). Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleotidyltransferase and aminoacyl synthetases. Biochimie 56, 1089–101.CrossRefGoogle Scholar
Caspar, D. L. D. (1956 a). Structure of bushy stunt virus. Nature, Lond. 177, 475–6.CrossRefGoogle ScholarPubMed
Caspar, D. L. D. (1956 b). Structure of tobacco mosaic virus. Radial density distribution in the tobacco mosaic virus particle. Nature, Lond. 177, 928–30.CrossRefGoogle Scholar
Chan, S. I. & Nelson, J. H. (1969). Proton magnetic resonance studies of ribose dinucleoside monophosphates in aqueous solution. I. The nature of the base-stacking interaction in adenylyl (3′-5′) adenosine. J. Am. chem. Soc. 91 (1), 168–83.CrossRefGoogle Scholar
Chen, M. C., Giegé, R., Lord, R. C. & Rich, A. (1975). Raman spectra and structure of yeast phenylalanine tRNA in the crystalline state and in solution. Biochemistry, N.Y. 14, 4385–91.CrossRefGoogle ScholarPubMed
Clark, B. F. C., Doctor, B. P., Holmes, K. C., Klug, A., Marcker, K. A., Morris, S. J. & Paradies, H. H. (1968). Crystallization of transfer RNA. Nature, Lond. 219, 1222–4.CrossRefGoogle Scholar
Cohn, M., Danchin, A. & Grunberg-Manago, M. (1969). Proton magnetic relaxation studies of manganous complexes of transfer RNA and related compounds. J. molec. Biol. 39, 199217.CrossRefGoogle Scholar
Cole, P. E., Yang, S. K. & Crothers, D. M. (1972). Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams. Biochemistry, N.Y. II, 4358–68.CrossRefGoogle Scholar
Coutts, S. M., Riesner, D., Römer, R., Rabl, C. R. & Maass, G. (1975). Kinetics of conformational changes in tRNAPhe (yeast) as studied by the fluorescence of the Y. base and of formycin substituted for the 3′ terminal adenine. Biophys. Chem. 3, 275–89.CrossRefGoogle Scholar
Cox, R. A., Pratt, H., Huvos, P., Higginson, B. & Hirst, W. (1973). A study of the thermal stability of ribosomes and biologically active subribosomal particles. Biochem. J. 134, 775–93.CrossRefGoogle ScholarPubMed
Cozzone, P. J. & Jardetzky, O. (1976a). P31 Fourier transform NMR study of mononucleotides and dinucleotides. I. Chemical shifts. Biochemistry, N.Y. 15, 4853–59.CrossRefGoogle Scholar
Cozzone, P. J. & Jardetzky, O. (1976b). P31 Fourier transform NMR study of mononucleotides and dinucleotides. II. Coupling constants. Biochemistry, N.Y. 15, 4860–66.CrossRefGoogle Scholar
Craig, M. E., Crothers, D. M. & Doty, P. (1971). Relaxation kinetics of dimer formation by self complementary oligonucleotides. J. molec. Biol. 62, 383401.CrossRefGoogle ScholarPubMed
Cramer, F., v. d. Haar, F., Saenger, W. & Schlimme, E. (1968). Single crystals of phenylalanine-specific transfer ribonucleic acid. Angew. Chem. 7, 895.CrossRefGoogle ScholarPubMed
Crothers, D. M., Cole, P. E., Hilbers, C. W. & Shulman, R. G. (1974). The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J. molec. Biol. 87, 6388.CrossRefGoogle ScholarPubMed
Crothers, D. M., Hilbers, C. W. & Shulman, R. G. (1973). NMR study of hydrogen bonded ring protons in Watson–Crick base pairs. Proc. natn. Acad. Sci. U.S.A. 70, 2899–901.CrossRefGoogle Scholar
Danchin, A. & Grunberg-Manago, M. (1970). Differences in binding of oligo C to charged and uncharged tRNA. FEBS Lett. 9, 327–30.CrossRefGoogle Scholar
Daniel, W. E. Jr, & Cohn, M. (1975). Proton nuclear magnetic resonance of spin-labeled Escherichia coli tRNAmetfl. Proc. natn. Acad. Sci. U.S.A. 72 (7), 2582–6.CrossRefGoogle Scholar
Daniel, W. E. Jr, & Cohn, M. (1976). Changes in tertiary structure accompanying a single base change in tRNA. Proton magnetic resonance and aminoacylation studies of E. coli tRNAmetfl and tRNAmetf3 and their spin-labelled (s4U8) derivatives. Biochemistry, N.Y. 15, 3917–24.CrossRefGoogle Scholar
Dasgupta, R., Shih, D. S., Saris, C. & Kaesberg, P. (1975). Nucleotide sequence of a viral RNA fragment that binds to eukaryotic ribosomes. Nature, Lond. 256, 624–7.CrossRefGoogle ScholarPubMed
Davies, D. R. (1960). Polyinosinic plus polycytidylic acid: A crystalline polynucleotide complex. Nature, Lond. 186, 1030–31.CrossRefGoogle ScholarPubMed
Davis, R. C. & Tinoco, I. Jr, (1968). Temperature-dependent properties of dinucleoside phosphates. Biopolymers 6, 223–42.CrossRefGoogle ScholarPubMed
De, Clercq E., Torrence, P. F., Fukui, T. & Ikehara, M. (1976). Role of purine N3 in the biologic activities of poly(A) and poly(I). Nucl. Acids Res. 3, 15911601.Google Scholar
De, Clercq E., Torrence, P. F., De Somer, P. & Witkop, B. (1975). Biological, biochemical and physiochemical evidence for the existence of the poly A · poly U · poly I triplex. J. biol. Chem. 250, 2521–31.Google Scholar
Delaney, P., Bierbaum, J. & Ofengand, J. (1974). Conformational changes in the thiouridine region of E. coli transfer RNA as assessed by photochemically induced cross-linking. Archs Biochem. Biophys. 161, 260–7.CrossRefGoogle Scholar
Diener, T. O. (1967). Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. Science, N.Y. 18, 378–81.CrossRefGoogle Scholar
Dondi, P. G. & Barker, D. C. (1974). Some properties of ribosome crystals isolated from hypothermically treated chick embryos. J. Cell. Sci. 14, 301–17.CrossRefGoogle ScholarPubMed
Donohue, J. (1969). Fourier analysis and the structure of DNA. Science, N.Y. 165, 1091–96.CrossRefGoogle ScholarPubMed
Dubroff, L. (1977). Oligouridylate stretches in heterogeneous nuclear RNA. Proc. natn. Acad. Sci. U.S.A. (in the Press).CrossRefGoogle Scholar
Drake, A. F., Mason, S. F. & Trim, A. R. (1974). Optical studies of base stacking properties of 2′-O-methylated dinucleoside monophosphates. J. molec. Biol. 86, 727–39.CrossRefGoogle Scholar
Dunn, J. J. (1975). Processing of RNA. Brookhaven Symp. Biol. no. 26. Brookhaven National Laboratory, Upton, N.Y. 11973, BNL 50427.Google Scholar
Ecarot-charrier, B. & Cedergren, R. J. (1976). The preliminary sequence of tRNAmetf from Anacystis nidulans compared with other initiator tRNAs. FEBS Lett. 63, 287–90.CrossRefGoogle Scholar
Ehresmann, C., Steigler, P., Mackie, G. A., Zimmermann, P. A., Ebel, J.-P. & Fellner, P. (1975). Primary sequence of the 16 S ribosomal RNA of E. coli. Nucl. Acids Res. 2, 265–78.CrossRefGoogle Scholar
Eigen, M. & Pörschke, D. (1970). Co-operative non-enzymic base recognition. I. Thermodynamics of the helix-coil transition of oligoriboadenylic acids at acidic pH. J. molec. Biol. 53, 123–41.CrossRefGoogle ScholarPubMed
Eisenberg, H. & Felsenfeld, G. (1967). Studies of the temperature-dependent conformation and phase separation of polyriboadenylic acid solutions at neutral pH. J. molec. Biol. 30, 1737.CrossRefGoogle ScholarPubMed
Eisenger, J. (1971). Complex formation between transfer RNA's with complementary anticodons. Biochem. biophys. Res. Comm. 43, 854–61.CrossRefGoogle Scholar
Eisinger, J. & Gross, N. (1975). Conformers, dimers and anticodon complexes of tRNAGlu2 (E. coli). Biochemistry, N.Y. 16, 4031–41.CrossRefGoogle Scholar
Elson, E., Scheffler, I. E. & Baldwin, R. L. (1970). Helix formation by d(TA) oligomers. III. Electrostatic effects. J. molec. Biol. 54, 401–15.CrossRefGoogle Scholar
Engel, J. D. & Von Hippel, P. H. (1974). Effects of methylation on the stability of nucleic acid conformation: studies at the monomer level. Biochemistry, N.Y. 14, 4143–58.CrossRefGoogle Scholar
Engelberg, H. & Schoulaker, R. (1976). Sequence homologies between ribosomal and phage RNA's: a proposed molecular basis for RNA phage parasitism. J. molec. Biol. 106, 709–33.CrossRefGoogle Scholar
Englander, S. W., Downer, N. & Teitelbaum, H. (1972 a). Hydrogen exchange. A. Rev. Biochem. 41, 903–24.CrossRefGoogle ScholarPubMed
Englander, J. J., Kallenbach, N. R. & Englander, S. W. (1972 b). Hydrogen exchange study of some polynucleotides and transfer RNA. J. molec. Biol. 63, 153–69.CrossRefGoogle ScholarPubMed
Erdmann, V. A. (1976). Structure and function of 5 S and 5.8 S RNA. Prog. nucleic. Acid Res. & molec. Biol. 18, 4590.CrossRefGoogle ScholarPubMed
Evans, F. E., Lee, C. H. & Sarma, R. H. (1975). 300 MHz NMR study on the effect of base stacking on backbone conformational flexibility in oxy and deoxy adenyl dinucleosides. Biochem. biophys. Res. Commun. 63, 106–14.CrossRefGoogle Scholar
Evans, F. E. & Sarma, R. H. (1976). Nucleotide rigidity. Nature, Lond. 263, 567–72.CrossRefGoogle ScholarPubMed
Everett, G. A. & Madison, J. T. (1976). Nucleotide sequence of phenylalanine tRNA from pea. Biochemistry, N.Y. 15, 1016–21.CrossRefGoogle ScholarPubMed
Ezra, F. S., Kondo, N. S., Ainsworth, C. F. & Danyluk, S. S. (1976). The effect of (2′-5′) and (3′-5′) phosphodiester linkages on conformational and stacking properties of cytidylyl-cytidine in aqueous solution. Nucl. Acids Res. 3, 2549–62.CrossRefGoogle Scholar
Fasman, G. D. (ed.) (1975). Handbook of Biochemistry and Molecular Biology, 3rd ed. Vol. I. Nucleic Acids. Chemical Rubber Co., Cleveland, Ohio 44128.Google Scholar
Fasman, G. D., Lindblow, C. & Grossman, L. (1964). The helical conformations of polycytidylic acid: studies on the forces involved. Biochemistry, N.Y. 3 (8), 1015–21.CrossRefGoogle ScholarPubMed
Favre, A., Buckingham, R. & Thomas, G. (1975). tRNA tertiary structure in solution as probed by the photochemically induced 8∓13 cross-link Nucl. Acids Res. 2, 1421–32.CrossRefGoogle ScholarPubMed
Felsenfeld, G. & Miles, H. T. (1967). The physical and chemical properties of nucleic acids. A. Rev. Biochem. 36, 407–48.CrossRefGoogle ScholarPubMed
Fiers, W., Contreras, R., Duerinck, F., Hageman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raeymaekers, A., Van Den Berghe, A., Volckaert, G. & Ysebaert, M. (1976). Complete nucleotide sequence of bacteriophage MS 2 RNA: primary and secondary structure of the replicase gene. Nature, Lond. 260, 500–7.CrossRefGoogle Scholar
Finch, J. T. & Klug, A.Structure of poliomyelitis virus. Nature, Lond. 183, 1709–14.CrossRefGoogle Scholar
Flory, P. J. (1953). Principles of Polymer Chemistry. Ithaca, N.Y.: Cornell University Press.Google Scholar
Flory, P. J. (1969). Statistical Mechanics of Chain Molecules. N.Y.: Wiley-Interscience.CrossRefGoogle Scholar
Fox, G. E. & Woese, C. R. (1975). 5 RNA secondary structure. Nature, Lond. 256, 505–7.CrossRefGoogle Scholar
Franklin, R. E. (1956). Location of the ribonucleic acid in the tobacco mosaic virus particle. Nature, Lond. 177, 928–30.CrossRefGoogle Scholar
Franklin, R. E. & Klug, A. (1956). The nature of the helical groove on the tobacco mosaic virus particle. Biochim. biophys. Acta 19, 403–16.CrossRefGoogle Scholar
Freier, S. M. & Tinoco, I. Jr., (1975). The binding of complementary oligoribonucleotides to yeast initiator tRNA. Biochemistry, N.Y. 14, 3310–14.CrossRefGoogle Scholar
Fresco, J. R., Adams, A., Ascione, R., Henley, D. & Lindahl, T. (1966). Tertiary structure in transfer ribonucleic acids. Cold Spring Harb. Symp. quant. Biol. 31, 527–37.CrossRefGoogle ScholarPubMed
Fresco, J. R., Blake, R. D. & Langridge, R. (1968). Crystallization of transfer ribonucleic acids from unfractionated mixtures. Nature, Lond. 220, 1285–7.CrossRefGoogle ScholarPubMed
Fuller, W., Hutchinson, F., Spencer, M. & Wilkins, M. H. F. (1967). Molecular and crystal structures of double-helical RNA. I. An X-ray diffraction study of fragmented yeast RNA and a preliminary double-helical RNA model. J. molec. Biol. 27, 507–24.CrossRefGoogle Scholar
Gamble, R. C., Schoemaker, H. J. P., Jekowsky, E. & Schimmel, P. R. (1976). Rate of tritium labelling of specific purines in relation to nucleic acid and particularly tRNA conformation. Biochemistry, N.Y. 15, 2791–9.CrossRefGoogle Scholar
Gartland, W. J. & Sueoka, N. (1966). Two interconvertable forms of tryptophanyl sRNA in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 55, 948–55.CrossRefGoogle Scholar
Giessner-prettre, C. & Pullman, B. (1976). On the atomic or ‘local’ contributions to proton chemical shifts due to the anisotropy of the diamagnetic susceptibility of the nucleic acid bases. Biochem. biophys. Res. Commun. 70, 578–81.CrossRefGoogle ScholarPubMed
Giessner-prettre, C., Pullman, B., Borer, P. N., Kan, L.-S. & T'so, P. O. P. (1976). Ring current effects in the NMR of nucleic acids: A graphical approach. Biopolymers 15, 2277–86.CrossRefGoogle ScholarPubMed
Gilbert, W., Maxam, A. & Mirzabekhov, A. (1976). Contacts between Lac repressor and DNA revealed by methylation. In Control of Ribosome Synthesis (ed. Kjeldgaard, N. O. and Maaloe, O.), pp. 139–48. Copenhagen: Munkgaard.Google Scholar
Gill, S. J., Downing, M. & Sheats, G. F. (1967). The enthalpy of self- association of purine derivatives in water. Biochemistry, N.Y. 6, 272–6.CrossRefGoogle ScholarPubMed
Glaubiger, D., Lloyd, D. A. & Tinoco, I. Jr, (1968). Temperature- dependent optical properties of a torsional oscillator model for dinucleoside phosphates. Biopolymers 6, 409–14.CrossRefGoogle ScholarPubMed
Golaś, T., Fikus, M., Kazimierczuk, Z. & Shugar, D. (1976). Preparation and properties of an analogue of poly(A) and poly(G): poly (isoguanylic acid). Eur. J. Biochem. 65 (I), 183–92.CrossRefGoogle Scholar
Goldstein, R. N., Stefanovic, S. & Kallenbach, N. R. (1972). On the conformation of transfer RNA in solution: dependence of denaturation temperature and structural parameters of mixed and formylmethionyl Escherichia coli transfer RNA on sodium ion concentration. J. molec. Biol. 69, 217–36.CrossRefGoogle ScholarPubMed
Goodchild, J., Fellner, P. & Porter, A. G. (1975). The determination of secondary structure in the poly(C) tract of encephalomyocarditis virus RNA with sodium bisulphite. Nucl. Acids Res. 2, 887–95.CrossRefGoogle ScholarPubMed
Gorenstein, D. G., Findlay, J. B., Momii, R. K., Luxon, B. A. & Kar, D. (1976). Temperature dependence of the 31p chemical shifts of nucleic acids. A probe of phosphate ester torsional conformations. Biochemistry, N.Y. 15, 3796–803.CrossRefGoogle ScholarPubMed
Gorenstein, D. G. & Kar, D. (1975). 31P chemical shifts in phosphate diester monoanions. Bond angle and torsional angle defects. Biochem. biophys. Res. Commun. 65, 1073–80.CrossRefGoogle Scholar
Govil, C. (1976). Conformational structure of polynucleotides around the O—P bonds: refined parameters for CPF calculations. Biopolymers 15, 2303–8.CrossRefGoogle Scholar
Govil, G. & Smith, I. C. P. (1973). A 13C magnetic resonance study of the helix coil transition in poly(U). Biopolymers 12, 2589–98.CrossRefGoogle Scholar
Gralla, J. & Crothers, D. M. (1973). Free energy of imperfect nucleic acid helices. II. Small hairpin loops. J. molec. Biol. 73, 497511.CrossRefGoogle ScholarPubMed
Gralla, J., Steitz, J. & Crothers, D. M. (1974). Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage RNA. Nature, Lond. 248, 204–8.CrossRefGoogle Scholar
Gray, D. M. & Ratliff, R. L. (1975). CD spectra of poiy (dAC.dGT) poly (rAU.rGU) and hybrids poly (dAC.rGU) poly r(AC).d(GT) in the presence of ethanol. Biopolymers 14, 487–98.CrossRefGoogle Scholar
Griffin, B. E. (1975). Studies and sequences of E. coli 4.5 S RNA. J. biol. Chem. 250, 5426–37.CrossRefGoogle ScholarPubMed
Grosjean, H., Söll, D. G. & Crothers, D. M. (1976). Studies of the complex between tRNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets. J. molec. Biol. 103, 499520.CrossRefGoogle Scholar
Grunberg-manago, M., Ortiz, P. J. & Ochoa, S. (1956). Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of Azotobacter vinelandii. Biochim. biophys. Acta 20, 269–85.CrossRefGoogle ScholarPubMed
Gueron, M. & Shulman, R. G. (1975). 31P magnetic resonance of tRNA. Proc. natn. Acad. Sci. U.S.A. 72, 3482–5.CrossRefGoogle ScholarPubMed
Gupta, R. (1976). Dynamic range problem in Fourier transform NMR Modified WEFT pulse sequence. J. Magn. Reson. 24, 455–61.Google Scholar
Gust, D., Moon, R. B. & Roberts, J. D. (1975). Applications of natural- abundance N15 n.m.r. to large biochemically important molecules. Proc. natn. Acad. Sci. U.S.A. 72, 4696–700.CrossRefGoogle Scholar
Hall, R. H. (1971). The Modified Nucleosides in Nucleic Acids. New York: Columbia University Press.Google Scholar
Hamill, N. D., Grant, D. M., Horton, W. J., Lundquist, R. & Dickman, S. (1976). Magnetic resonance spectroscopy on carbon-13 labelled uracil in tRNA. J. Am. chem. Soc. 98, 1276–8.CrossRefGoogle Scholar
Hampel, A., Labanauskas, M., Connors, P. G., Kirkegard, L., Rajbhandary, U. L., Sigler, P. B. & Bock, R. M. (1968). Single crystals of transfer RNA from formylmethionine and phenylalanine transfer RNA's. Science, N.Y. 162, 1384–7.CrossRefGoogle ScholarPubMed
Hara, H., Horiuchi, T., Saneyoshi, M. & Nishimura, S. (1970). 4 thiouridine-specific spin labelling of E. coli tRNA. Biochem. biophys. Res. Commun. 38, 305–11.CrossRefGoogle Scholar
Harrison, S. C. & Jack, A. (1975) Structure of tomato bushy stunt virus. III. Three-dimensional X-ray diffraction analysis at 16 A resolution. J. molec. Biol. 97, 173–91.CrossRefGoogle Scholar
Hattori, M., Frazier, J. & Miles, H. T. (1975) Poly (8-aminoguanylic acid): formation of ordered self structures and interaction with poly (cytidylic acid). Biochemistry, N.Y. 14, 5033–45.CrossRefGoogle ScholarPubMed
Hattori, M., Frazier, J. & Miles, H. T. (1976). The structure of triple stranded G·2C polynucleotide helices. Biopolymers 15, 523–31.CrossRefGoogle ScholarPubMed
Hilbers, C. W. & Patel, D. J. (1975). Proton nuclear magnetic resonance investigations of the nucleation and propagation reactions associated with the helix-coil transition of d-ApTpGpCpApT in H2O solution. Biochemistry, N.Y. 14, 2656–60.CrossRefGoogle ScholarPubMed
Hilbers, C. W., Robillard, G. T., Shulman, R. G., Blake, R. D., Webb, P. K., Fresco, R. & Riesner, D. (1976). Thermal unfolding of yeast glycine tRNA. Biochemistry, N.Y. 15, 1874–82.CrossRefGoogle Scholar
Hillen, W. & Gassen, H. G. (1975). Physical and coding properties of poly (5-amino uridylic acid) and of 5-amino-uridine-contairnng trinucleotides. Biochim. biophys. Acta 407, 347–56.CrossRefGoogle Scholar
Hochkeppel, H. K. & Craven, G. R. (1976). Evidence that 16 S RNA from Escherichia coli can assume two different biologically active conformations. Nucl. Acids Res. 3, 1883–902.CrossRefGoogle Scholar
Hochkeppel, H. K., Spicer, E. & Craven, G. R. (1976). A method of preparing Escherichia coli 16 S RNA possessing previously unobserved 30 S ribosomal protein binding sites. J. molec. Biol. 101, 155–70.CrossRefGoogle ScholarPubMed
Hoffman, B. M., Schofield, P. & Ricu, A. (1969). Spin labelled tRNA. Proc. natn. Acad. Sci. U.S.A. 62, 1195–202.CrossRefGoogle Scholar
Holder, J. W. & Lingrel, J. B. (1975). Determination of secondary structure in rabbit globin mRNA by thermal denaturation. Biochemistry, N.Y. 14, 4209–15.CrossRefGoogle ScholarPubMed
Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R. & Zamir, A. (1965). Structure of a ribonucleic acid. Science, N.Y. 147, 1462–5.CrossRefGoogle ScholarPubMed
Holmes, K. C. & Blow, D. M. (1965). Protein and Nucleic Acid Structure by X-ray (ed. Wiley, J. & Sons). N.Y., London, Sydney: Interscience Publisher.Google Scholar
Holmes, K. C., Stubbs, G. J., Mandelkow, E. & Gallwitz, U. (1975). Structure of tobacco mosaic virus at 6·7 Å resolution. Nature, Lond. 254, 192–6.CrossRefGoogle ScholarPubMed
Hogsteen, K. (1959). The structure of crystals containing a hydrogen bonded complex of I methyithymine and 9 methyladenine. Acta crystallogr. 12, 822–3.CrossRefGoogle Scholar
Horowitz, J., Ofengand, J., Daniel, W. E. Jr, & Cohn, M. (1977). 19F NMR of fluorouridine substituted tRNA1val from E. coli. Biochemistry, N.Y. (submitted).Google Scholar
Howard, F. B., Frazier, J. & Miles, H. T. (1977). Stable and metastable forms of poly(G). Biopolymers (in the Press).CrossRefGoogle ScholarPubMed
Howard, F. B., Frazier, J. & Miles, H. T. (1971). Interaction of polyribothymidylic acid with polyadenylic acid. J. biol. Chem. 246, 7073–86.CrossRefGoogle ScholarPubMed
Howard, F. B., Frazier, J. & Miles, H. T. (1975) Poly (8-bromoadenylic acid): Synthesis and characterization of an all-syn polynucleotide. J. biol. Chem. 250, 3951–9.CrossRefGoogle ScholarPubMed
Howard, F. B., Frazier, J. & Miles, H. T. (1976). Poly (2-aminoadenylic acid): Interaction with poly (uridylic acid). Biochemistry, N.Y. 15, 3783–95.CrossRefGoogle ScholarPubMed
Huxley, H. E. & Zubay, G. (1960). Electron microscope observations on the structure of microsomal particles from Escherichia coli. J. molec. Biol. 2, 1018.CrossRefGoogle Scholar
Ikehara, M., Fukui, T. & Kakiuchi, N. (1976). Polynucleotides. XL. Synthesis and properties of poly 2′-azedo 2′-deoxyadenylic acid. Nucl. Acids Res. 3, 2089–100.CrossRefGoogle Scholar
Inners, L. D. & Felsenfeld, G. (1970). Conformation of polyribouridylic acid in solution. J. molec. Biol. 50, 373–89.CrossRefGoogle ScholarPubMed
Jack, A., Klug, A. & Ladner, S. E. (1976). ‘Non-rigid’ nucleotides in tRNA: a new correlation in the conformation of a ribose. Nature, Lond. 261, 250–1.CrossRefGoogle ScholarPubMed
Jacobson, A. B. (1976). Studies on secondary structure of single stranded RNA from bacteriophage MS2 by electron microscopy. Proc. natn. Acad. Sci. U.S.A. 73, 307–11.CrossRefGoogle ScholarPubMed
Janion, C. & Scheit, K. H. (1976). The effect of thioketo substitution on uracil-2-aminopurine and uracil-2,6-diaminopurine interaction in polynucleotides. Biochim. biophys. Acta 432, 192–98.CrossRefGoogle ScholarPubMed
Johnson, N. P. & Schleich, T. (1974). CD studies of the conformational stability of dinucleoside phosphates and related compounds in aqueous neutral salt solutions. Biochemistry, N.Y. 13, 981–7.CrossRefGoogle Scholar
Kallenbach, N. R. (1968). Theory of thermal transitions in low molecular weight RNA chains. J. molec. Biol. 37, 445–66.CrossRefGoogle ScholarPubMed
Kallenbach, N. R. (1974). Stability of helical nucleic acids. In Quantum Statistical Mechanics in the Natural Sciences (ed. Kursunoglu, B., Mintz, S. L., and Widmayer, S. M.), pp. 95118. New York: Plenum.CrossRefGoogle Scholar
Kallenbach, N. R., Daniel, W. E. JR, & Kaminker, M. A. (1976). NMR study of hydrogen bonded ring protons in oligonucleotide helices involving classical and nonclassical base pairs. Biochemistry, N.Y. 15, 1218–24.CrossRefGoogle ScholarPubMed
Kallenbach, N. R., Ma, R. I., Ofengand, J. & Siddiqui, M. A. Q. (1973) Thermal transitions in Escherichia coli tRNAfmet and two of its molecular fragments. Biopolymers 12, 1247–58.CrossRefGoogle Scholar
Kan, L. S., Borer, P. N. & Ts'o, P. O. P. (1975a). Conformation and interaction of short nucleic acid double stranded helices. II. PMR studies on the hydrogen bonded NH-N protons of ribosyl ApApGpCpUpU helix. Biochemistry, N.Y. 14, 4864–9.CrossRefGoogle Scholar
Kan, L. S., Ts'o, P. O. P., Van Der Haar, F., Sprinzl, M. & Cramer, F. (1975b). Proton magnetic resonance studies on the conformation of the hexanucleotide GmpApApYpApp and related fragments from the anticodon loop of yeast tRNAphe. Biochemistry, N.Y. 14, 3278–91.CrossRefGoogle Scholar
Kastrup, R. V. & Schmidt, P. G. (1975). 1H NMR of modified bases of valine tRNA (E. coli). A direct monitor of sequential thermal unfolding. Biochemistry, N.Y. 16, 3612–18.CrossRefGoogle Scholar
Kayne, M. S., Benigno, R. & Kallenbach, N. R. (1977). Proton NMR study of the effect of pH on tRNA structure. Biochemistry, N.Y. 16, 2064–73.CrossRefGoogle Scholar
Kayne, M. S. & Cohn, M. (1974). Enhancement of Tb (III) and Eu (III) fluorescence in complexes with Escherichia coli tRNA. Biochemistry, N. Y. 13, 4159–65.CrossRefGoogle ScholarPubMed
Kearns, D. R. (1976). High resolution nuclear magnetic resonance investigations of the structure of tRNA in solution. Prog. nucleic Acid Res. & molec. Biol. 18, 91150.CrossRefGoogle ScholarPubMed
Kearns, D. R., Patel, D. J. & Shulman, R. G. (1971). High resolution nuclear magnetic resonance studies of hydrogen bonded protons of tRNA in water. Nature, Lond. 229, 338–9.CrossRefGoogle ScholarPubMed
Kearns, D. R. & Shulman, R. G. (1974). High resolution NMR studies of the structure of tRNA and other polynucleotides in solution. Acc. Chem. Res. 7, 33–9.CrossRefGoogle Scholar
Kearns, D. R. & Wong, Y. P. (1974). Investigation of the secondary structure of Escherichia coli 5 S RNA by high resolution NMR. J. molec. Biol. 87, 755–74.CrossRefGoogle Scholar
Kim, S.-H. (1976). Three-dimensional structure of transfer RNA. Prog. nucleic Acid Res. & molec. Biol. 17, 181216.CrossRefGoogle ScholarPubMed
Kim, S.-H. (1977). Crystal structure of yeast tRNAPhe, its correlation to the solution structure and functional implications. In Monograph ‘Transfer RNA’. MIT Press, (in the Press).Google Scholar
Kim, S.-H., Berman, H. M., Seeman, N. C. & Newton, M. D. (1973). Seven basic conformations of nucleic acid structural units. Acta crystallogr. B 29, 703–10.CrossRefGoogle Scholar
Kim, S.-H. & Rich, A. (1968). Single crystals of transfer RNA: An X-ray diffraction study. Science, N.Y. 162, 1381–4.CrossRefGoogle ScholarPubMed
Kim, S.-H. & Sussman, J. L. (1976). π turn is a conformational pattern in RNA loops and bonds. Nature, Lond. 260, 645–6.CrossRefGoogle Scholar
Klug, A. & Caspar, D. L. D. (1960). The structure of small viruses. Adv. Virus Res. 7, 225325.CrossRefGoogle ScholarPubMed
Klug, A., Finch, J. T. & Franklin, R. E. (1957). Structure of turnip yellow mosaic virus. Nature, Lond. 179, 683–4.CrossRefGoogle ScholarPubMed
Klug, A., Holmes, K. C. & Finch, J. T. (1961). X-ray diffraction studies on ribosomes from various sources. J. molec. Biol. 3, 87100.CrossRefGoogle ScholarPubMed
Kohlschein, J., Hagenberg, L. & Gassen, H. G. (1974). Synthesis and properties of poly(6-methylpurinylic acid), poly(6-methoxypurinylic acid) and poly(6-methylthiopurinylic acid). Biochim. biophys. Acta 374, 407–16.CrossRefGoogle Scholar
Komoroski, R. A. & Allerhand, A. (1972). Natural abundance C13 Fourier transform NMR spectra and spin lattice relaxation times of unfractionated yeast tRNA. Proc. natn. Acad. Sci. U.S.A. 69, 1804–8.CrossRefGoogle Scholar
Komoroski, R. A. & Allerhand, A. (1974). Observation of resonances from some minor bases in the natural abundance C13 NMR spectrum of unfractionated yeast tRNA. Evidence for fast internal motion of the DHU rings. Biochemistry, N.Y. 13, 369–72.CrossRefGoogle Scholar
Kondo, N. S. & Danyluk, S. S. (1976). Conformational properties of adenylyl 3′–5′ adenosine in aqueous solution. Biochemistry, N.Y. 15, 756–67.CrossRefGoogle Scholar
Kondo, N. S., Ezra, F. & Danyluk, S. S. (1975). A direct assignment of all base and anomeric hi′ signals in the proton spectrum of a trinucleoside diphosphate, ApApA: structure implications. FEBS Lett. 53, 213–16.CrossRefGoogle ScholarPubMed
Kroon, P. A., Kreishman, G. P., Nelson, J. H. & Chan, S. I. (1974). The effects of chain length on the secondary structure of oligo adenylates. Biopolymers 13, 25712592.CrossRefGoogle Scholar
Krugh, T. R., Laing, J. W. & Young, M. A. (1976). Hydrogen bonded complexes of ribodinucleoside monophosphates in aqueous solution. PMR studies. Biochemistry, N.Y. 15, 1224–8.CrossRefGoogle ScholarPubMed
Ladner, J. E., Jack, A., Robertus, J. D., Brown, R. S., Rhodes, D., Clark, B. F. C. & Klug, A. (1975). Atomic co-ordinates for yeast phenylalanine tRNA. Nucl. Acids Res. 2, 1629–37.CrossRefGoogle ScholarPubMed
Lake, J. A. & Beeman, W. W. (1968). On the conformation of yeast tRNA. J. molec. Biol. 31, 115–25.CrossRefGoogle Scholar
Lakshminarayanan, A. V. & Sasisekharan, V. (1970). Stereochemistry of nucleic acids and polynucleotides. II. Allowed conformations of the monomer unit for different ribose puckerings. Biochim. biophys. Acta 204, 4959.CrossRefGoogle Scholar
Lakshminarayanan, A. V. & Sasisekharan, V. (1969 a). Stereochemistry of nucleic acids and polynucleotides. IV. Conformational energy of basesugar units. Biopolymers 8, 475–88.CrossRefGoogle Scholar
Lakshminarayanan, A. V. & Sasisekharan, V. (1969 b). Stereochemistry of nucleic acids and polynucleotides. V. Conformational energy of ribosephosphate unit. Biopolymers 8, 489503.CrossRefGoogle Scholar
Lam, S. S. M. & Schimmel, P. R. (1975). Equilibrium measurements of cognate and noncognate interactions between aminoacyl transfer RNA synthetases and transfer RNA. Biochemistry, N.Y. 14, 2775–80.CrossRefGoogle ScholarPubMed
Langridge, R., Billeter, M. A., Borst, P., Burdon, R. H. & Weissmann, C. (1964). The replicative form of MS2 RNA. An X-ray diffraction study. Proc. natn. Acad. Sci. U.S.A. 52, 114–19.CrossRefGoogle ScholarPubMed
Langridge, R. & Gomatos, P. J. (1963). The structure of RNA. Science, N.Y. 141, 694–8.CrossRefGoogle ScholarPubMed
Langridge, R. & Holmes, K. C. (1962). X-ray diffraction studies of concentrated gels of ribosomes from E. coli. J. molec. Biol. 5, 611–17.CrossRefGoogle ScholarPubMed
Langridge, R. & Rich, A. (1963). Molecular structure of helical polycytidylic acid. Nature, Lond. 198, 725–8.CrossRefGoogle ScholarPubMed
Lecanidou, R. & Richards, E. G. (1975). The thermodynamics and kinetics of conformational changes in 5 S RNA from Escherichia coli. Eur. J. Biochem. 57, 127–34.CrossRefGoogle ScholarPubMed
Lee, C.-H., Ezra, F. S., Kondo, N. S., Sarma, R. H. & Danyluk, S. S. (1976). Conformation properties of dinucleoside monophosphates in solution: Dipurines and dipyrimidines. Biochemistry, N.Y. 15, 3627–38.CrossRefGoogle ScholarPubMed
Lee, C.-H. & Sarma, R. H. (1976). Aqueous solution conformation of rigid nucleosides and nucleotides. J. Am. chem. Soc. 98, 3541–8.CrossRefGoogle ScholarPubMed
Leng, M. & Felsenfeld, G. (1966). A study of polyadenylic acid at neutral pH. J. molec. Biol. 15, 455–66.CrossRefGoogle ScholarPubMed
Lentz, P. J. & Strandberg, B. (1975). Progress toward a low resolution structure of the satellite tobacco necrosis virus. In Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (ed. Sundaralingam, M. and Rao, S. T.), pp. 441–55. Baltimore: University Park Press.Google Scholar
Lerman, L. S. (1961). Structural considerations on the interaction of DNA and acridines. J. molec. Biol. 3, 1830.CrossRefGoogle ScholarPubMed
Levitt, M. (1969). Detailed molecular model for transfer ribonucleic acid. Nature, Lond. 224, 759–63.CrossRefGoogle ScholarPubMed
Lewis, J. A. & Ames, B. N. (1972). Histidine regulation in Salmonella typhimurium. XI. The percentage of transfer RNAH15 charged in vivo and its relation to the repression of the histidine operon. J. molec. Biol. 66, 131–42.CrossRefGoogle Scholar
Lipsett, M. (1960). Evidence for helical structure in polyuridylic acid. Proc. natn. Acad. Sci. U.S.A. 46, 445–6.CrossRefGoogle ScholarPubMed
Littauer, U. Z. & Inouye, H. (1973). Regulation of tRNA. A. Rev. Biochem. 42, 439–70.CrossRefGoogle ScholarPubMed
Lomant, A. J. & Fresco, J. R. (1975). Structural and energetic consequences of noncomplementary base oppositions in nucleic acid helices. Prog. nucleic Acid Res. & molec. Biol. 15, 185218.CrossRefGoogle ScholarPubMed
Lowe, M. J. & Schellman, J. A. (1972). Solvent effects on dinucleotide conformation. J. molec. Biol. 65, 91109.CrossRefGoogle ScholarPubMed
Lynch, D. C. & Schimmel, P. R. (1974). Effects of abnormal base ionizations on Mg2+ binding to transfer ribonucleic acid as studied by a fluorescent probe. Biochemistry, N.Y. 13, 1852–61.CrossRefGoogle ScholarPubMed
Magdoff, B. S. (1960). Sub-units in southern bean mosaic virus. Nature, Lond. 185, 673–4.CrossRefGoogle ScholarPubMed
Marotta, C. A., Varricchio, F., Smith, I., Weissman, S. M., Sogin, M. L. & Pace, N. R. (1976). The primary structure of Bacillus subtilis and Bacillus stearothermophilus 5 S ribonucleic acids. Sequence variations between polynucleotides derived from mesophilic and thermophilic organisms. J. biol. Chem. 251, 3122–7.CrossRefGoogle Scholar
Martin, F. H., Uhlenbeck, O. C. & Doty, P. (1971). Self-complementary oligoribonucleotides: Adenylic acid-uridylic acid block copolymers. J. molec. Biol. 57, 201–15.CrossRefGoogle ScholarPubMed
Massoulié, J. (1968). Thermodynamique des associations de poly A et poly U en milieu neutre et alcalin. Eur. J. Biochem. 3, 428–38.CrossRefGoogle Scholar
Mazumdar, S. K., Saenger, W. & Scheit, K. H. (1974). Molecular structure of poly-2-thiouridylic acid, a double helix with non-equivalent polynucleotide chains. J. molec. Biol. 85, 213–29.CrossRefGoogle ScholarPubMed
Mehta, J. R. & Ludlum, D. B. (1976). Synthesis and properties of poly(O6- methylguanylic acid) and poly(O6-ethylguanylic acid). Biochemistry, N.Y. 15, 4329–32.CrossRefGoogle ScholarPubMed
Miles, T. (1976). Private communication.Google Scholar
Mills, D. R., Kramer, F. R., Dobkin, C., Nishihara, T. & Spiegelman, S. (1975). Nucleotide sequence of microvariant RNA: another small replicating molecule. Proc. natn. Acad. Sci. U.S.A. 72, 4252–6.CrossRefGoogle ScholarPubMed
Milman, G., Langridge, R. & Chamberlin, M. J. (1967). The structure of a DNA-RNA hybrid. Proc. natn. Acad. Sci. U.S.A. 5, 1804–10.CrossRefGoogle Scholar
Milner, J. J. & Walker, I. O. (1976). The conformation of i6 S RNA in the 30 S ribosomal subunit from Escherichia coli. Nucl. Acids Res. 3, 789808.CrossRefGoogle Scholar
Min Jou, W. & Fiers, W. (1976). Studies on bacteriophage MSz. XXXIII. Comparison of the nucleotide sequences in related bacteriophage RNA's. J. molec. Biol. 106, 1047–60.Google Scholar
Moore, P. B., Engelman, D. M. & Schoenborn, B. P. (1974). Asymmetry in the 50 S ribosomal subunit of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 71, 172–6.CrossRefGoogle Scholar
Moore, P. B., Engelman, D. M. & Schoenborn, B. P. (1975). A neutron scattering study of the distribution of protein and RNA in the 30 S ribosomal subunit of Escherichia coli. J. molec. Biol. 91, 101–20.CrossRefGoogle ScholarPubMed
Morimoto, T., Blobel, G. & Sabatini, D. D. (1972 a). Ribosome crystallization in chicken embryos. I. Isolation, characterization, and in vitro activity of ribosome tetramers. J. Cell Biol. 52, 338–54.CrossRefGoogle ScholarPubMed
Morimoto, T., Blobel, G. & Sabatini, D. D. (1972 b). Ribosome crystallization in chicken embryos. II. Conditions for the formation of ribosome tetramers in vivo. J. Cell Biol. 52, 355–66.CrossRefGoogle Scholar
Morris, D. R., Dahlberg, J. E. & Dahlberg, A. E. (1973). Detection of cation specific conformational changes in ribosomal RNA by gel electrophoresis. Nucl. Acids Res. 2, 447–58.CrossRefGoogle Scholar
Newton, M. D. (1973). A model conformational study of nucleic acid phosphate ester bonds. The torsional potential of dimethyl phosphate monoanion. J. Am. chem. Soc. 95, 256–8.CrossRefGoogle Scholar
Nisbet, J. H. & Slayter, H. S. (1975). Configurational changes in rRNA as a function of ionic conditions. Biochemistry, N.Y. 14, 4003–10.CrossRefGoogle Scholar
Nishimura, S. (1972). Minor components in tRNA: their characterization, location and function. Frog. nucleic Acid Res. & molec. Biol. 12, 4985.CrossRefGoogle ScholarPubMed
Nishimura, Y., Mirakawa, A. Y., Tsuaoi, M. & Nishimui, S. (1976). Raman spectra of transfer RNA with ultraviolet laser. Nature, Lond. 260, 173–4.CrossRefGoogle Scholar
O'brien, E. J. & Macewan, A. W. (1970). Molecular and crystal structure of the polynucleotide complex: polyinosinic acid plus polydeoxycytidylic acid. J. molec. Biol. 48, 243–61.CrossRefGoogle ScholarPubMed
Ofengand, J. & Bierbaum, J. (1973). Use of photochemically induced cross- linking as a conformational probe of the tertiary structure of certain regions in tRNA. Biochemistry, N.Y. 12, 1977–84.CrossRefGoogle Scholar
Ogasawara, N. & Inoue, Y. (1976 a). Titration and temperature dependent properties of homodinucleoside monophosphates. Evaluation of stacking equilibrium quotients for neutral and half ionized ApA, CpC, GpG, UpU. J. Am. chem. Soc. 98, 7054–60.CrossRefGoogle ScholarPubMed
Ogasawara, N. & Inoue, Y. (1976 b). Titration properties of homodinucleos side monophosphates. Determination of overlapping ionization constant- and intermolecular stacking equilibrium quotients of ApA, CpC, GpG and UpU. J. Am. chem. Soc. 98, 7048–53.CrossRefGoogle Scholar
Ogasawara, N., Watanabe, Y. & Inoue, Y. (1975). Determination of microscopic basic ionization constants of GpG. Structure and optical properties of half protonated GpG and their models. J. Am. chem. Soc. 97, 6571–6.CrossRefGoogle ScholarPubMed
OlsonT, ., Fouenire, M. J., Langley, K. H. & Foar, N. C. Jr, (1976). Detection of a major conformational change in tRNA by laser light scattering. J. molec. Biol. 102, 177–92.Google Scholar
Olson, W. K. (1973). Syn-anti effects on the spatial configuration of polynucleotide chains. Biopolymers 12, 1787–814.CrossRefGoogle ScholarPubMed
Olson, W. K. (1975 a). Configuration dependent properties of randomly coiling polynucleotide chains. I. A comparison of theoretical energy estimates. Biopolymers 14, 1775–95.CrossRefGoogle Scholar
Olson, W. K. (1975 b). Configuration dependent properties of randomly coiling polynucleotide chains. II. The role of the phosphodiester linkage. Biopolymers 14, 1797–810.CrossRefGoogle Scholar
Olson, W. K. & Flory, P. J. (1972). Spatial configurations of polynucleotide chains. I: Steric interactions in polyribonucleotides: a virtual bond model. II. Conformational energies and the average dimensions of polyribonucleotides. Biopolymers II, 166.CrossRefGoogle Scholar
Olson, W. K. & Manning, G. S. (1976). A configurational interpretation of the axial phosphate spacing in polynucleotide helices and random coils. Biopolymers 15, 2391–405.CrossRefGoogle ScholarPubMed
Österberg, R., Sjöberg, B. & Garret, R. A. (1976). Molecular model for S RNA. Small angle X-ray scattering study of native, denatured and aggregated 5 S RNA from Escherichia coli ribosomes. Eur. J. Biochem. 68, 481–87.CrossRefGoogle ScholarPubMed
Patel, D. J. (1975). PMR studies of the helix-coil transition of d-ApTpGpCpAp-T in D2O. Biochemistry, N.Y. 14, 3984–9.CrossRefGoogle Scholar
Patel, D. J. & Canuel, L. L. (1976). Ethidium bromide.(dC-dG-dC-dG)2 complex in solution: Intercalation and sequence specificity of drug binding at the tetranucleotide duplex level. Proc. natn. Acad. Sci. U.S.A. 73, 3343–7.CrossRefGoogle ScholarPubMed
Patel, D. J. & Hilbers, C. W. (1975). Proton nuclear magnetic resonance investigations of fraying in double-stranded d-ApTpGpCpApT in H2O solution. Biochemistry 14, 2651–6.CrossRefGoogle ScholarPubMed
Patel, D. J. & Tonelli, A. (1975). NMR investigations of the structure of the self-complementary duplex of d-ApTpGpCpApT in aqueous solution. Biochemistry, N.Y. 14, 3990–6.CrossRefGoogle Scholar
Pearce, T. C., Rowe, A. J. & Turnock, G. (1975). Determination of the molecular weights of RNA's by low speed sedimentation equilibrium 16 S rRNA as a model compound. J. molec. Biol. 97, 193205.CrossRefGoogle Scholar
Perry, R. P. (1976). Processing of RNA. A. Rev. Biochem. 45, 605–29.CrossRefGoogle ScholarPubMed
Pinnavaia, T. J., Miles, M. T. & Becker, E. D. (1975). Self assembled 5' guanosine monophosphate. NMR evidence for a regular, ordered structure and slow chemical exchange. J. Am. chem. Soc. 97, 71987200.CrossRefGoogle Scholar
Pipas, J. M. & McMahon, J. E. (1976). Method for predicting RNA secondary structure. Proc. natn. Acad. Sci. U.S.A. 72, 2017–21.CrossRefGoogle Scholar
Plesiewicz, E., Stepien, E., Bolewska, K. & Wierzchowski, K. L. (1976). Stacking self association of pyrimidine nucleosides and of cytosines: effects of methylation and thiolation. Nuci. Acids Res. 3, 1295–306.CrossRefGoogle ScholarPubMed
Pongs, O., Wkede, P., Eiuiviann, V. A. & Sprinzl, M. (1976). Binding of complementary oligonucleotides to amino-acylated tRNAPhe from yeast. Biochem. biophys. Res. Commun. 71, 1025–33.CrossRefGoogle ScholarPubMed
Pörschke, D. (1973). The dynamics of nucleic-acid single-strand conform- ation changes oligo- and polyriboadenylic acids. Eur. J. Biochem. 39, 117–26.CrossRefGoogle Scholar
Pörschke, D. (1974). A direct measurement of the unzippering rate of a nucleic acid double helix. Biophys. Chem. 2, 97101.CrossRefGoogle ScholarPubMed
Pörschke, D. (1976). The nature of stacking interaction in polynucleotides. Molecular states in oligo and polyribocytidylic acids by relaxation analysis. Biochemistry, N.Y. 15, 1495–99.CrossRefGoogle Scholar
Pörschke, D. & Eigen, M. (1971). Co-operative non-enzymic base recognition. III. Kinetics of the helix–coil transition of the oligoribouridylic-oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. J. molec. Biol. 62, 361.CrossRefGoogle Scholar
Pörschke, D., Uhlenbeck, O. C. & Martin, F. H. (1973). Thermodynamics and kinetics of the helix–coil transition of oligomers containing GC base pairs. Biopolymers 12, 1313–35.CrossRefGoogle Scholar
Powell, J. T., Richards, E. G. & Gratzer, W. B. (1972). The nature of stacking equilibria in polynucleotides. Biopolymers II, 235–50.CrossRefGoogle Scholar
Prescott, B., Gamache, R., Livramento, J. & Thomas, G. J. Jr, (1974). Raman studies of nucleic acids. XII. Conformations of oligonucleotides and deuterated polynucleotides. Biopolymers 13, 1821–45.CrossRefGoogle ScholarPubMed
Privalov, P. L., Filimonov, V. V., Venkstern, T. V. & Bayev, A. A. (1975). A calorimetric investigation of tRNAval1 melting. J. molec. Biol. 97, 279–88.CrossRefGoogle ScholarPubMed
Proudroot, N. J. & Brownlee, G. G. (1976). 3' non-coding region sequences in eukaryotic mRNA. Nature, Lond. 263, 211–14.CrossRefGoogle Scholar
Pullman, B. & Saran, A. (1976). Quantum mechanical studies on the conformation of nucleic acids and their constituents. Prog. nucleic Acid Res. & molec. Biol. 18, 216326.Google ScholarPubMed
Quigley, G. J. & Rich, A. (1976). Structural domains of tRNA molecules. Science, N.Y. 194, 796805.CrossRefGoogle Scholar
Quigley, G. J., Seeman, N. C., Wang, A. H. J., Suddath, F. L. & Rich, A. (1975). Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles. Nuci. Acids Res. 2, 2329–39.CrossRefGoogle ScholarPubMed
Ravetch, J., Gralla, J. & Crothers, D. M. (1974). Thermodynamic and kinetic properties of short RNA helices: the oligomer sequence AnGC Un. Nuci. Acids Res. I, 109–28.CrossRefGoogle Scholar
Raszka, M. & Kaplan, N. O. (1972). Association by hydrogen bonding of mononucleotides in aqueous solution. Proc. natn. Acad. Sci. U.S.A. 69, 2025–9.CrossRefGoogle ScholarPubMed
Record, M. T. Jr, (1967 a). Electrostatic effects on polynucleotide transitions. I. Behavior at neutral pH. Biopolymers 5, 975–92.CrossRefGoogle ScholarPubMed
Record, M. T. Jr, (1967 b). Electrostatic effects on polynucleotide transitions. II. Behavior of titrated systems. Biopolymers 5, 9931008.CrossRefGoogle ScholarPubMed
Reid, B. R. (1976). Private communication.Google Scholar
Reid, B. R., Ribeiro, N. J., Gould, G., Robillard, G., Hilbers, C. W. & Shulman, R. G. (1975). Tertiary hydrogen bonds in the solution structure of tRNA. Proc. natn. Acad. Sci. U.S.A. 72, 2049–53.CrossRefGoogle Scholar
Reid, B. R. & Robillard, G. T. (1975). Demonstration and origin of six tertiary base pair resonances in the NMR spectrum of Escherichia coil tRNAval1. Nature, Land. 257, 287–91.CrossRefGoogle Scholar
Renugopalakrishnan, V., Lakshminarayanan, A. V. & Sasisekharan, V. (1971). Stereochemistry of nucleic acids and polynucleotides. III. Electronic charge distribution. Biopolymers 10, 1159–67.CrossRefGoogle Scholar
Revzin, A. & Neumann, E. (1974). Conformational changes in rRNA induced by electric impulses. Biophys. Chem. 2, 144–50.CrossRefGoogle ScholarPubMed
Revzin, A., Neumann, E. & Katchalsky, A. (1973 a). Metastable secondary structures in rRNA: molecular hysteresis in the acid-base titration of Escherichia coil rRNA. J. moiec. Biol. 79, 95114.CrossRefGoogle Scholar
Revzin, A., Neumann, E. & Katchalsky, A. (1973 b). Metastable secondary structures in rRNA: a new method for analyzing the titration behavior of rRNA. Biopoiymers 12, 2853–81.CrossRefGoogle ScholarPubMed
Rhodes, D. (1975). Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification. J. molec. Blot. 94, 449–60.CrossRefGoogle ScholarPubMed
Rich, A. (1958). The molecular structure of polyinosinic acid. Biochim. biophys. Acta 29, 502–9.CrossRefGoogle ScholarPubMed
Rich, A. & Rajbhandary, U. L. (1976). Transfer RNA: Molecular structure, sequence, and properties. A. Rev. Biochem. 45, 80–60.CrossRefGoogle ScholarPubMed
Rich, A. & Davies, D. R. (1956). A new two stranded helical structure. Polyadenylic acid and polyuridylic acid. J. Am. chem. Soc. 78, 3548–9.CrossRefGoogle Scholar
Rich, A., Davies, D. R., Crick, F. H. C. & Watson, J. D. (1961). The molecular structure of polyadenylic acid. J. molec. Biol. 3, 7186.CrossRefGoogle ScholarPubMed
Rich, A. & Watson, J. D. (1954 a). Physical studies on ribonucleic acid. Nature, Land. 173, 995–96.CrossRefGoogle ScholarPubMed
Rich, A. & Watson, J. D. (1954 b). Some relations between DNA and RNA. Proc. natn. Acad. Sd. U.S.A. 40, 759–64.CrossRefGoogle ScholarPubMed
Riesner, D. & Römer, R. (1973). Thermodynamics and kinetics of conformational transitions in oligonucleotides and tRNA. In Physico Chemical Properties of Nucleic acids (ed. Duchesne, J.), pp. 237318. New York: Academic Press.Google Scholar
Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. S., Clarx, B. F. C. & Krug, A. (1974). Correlation between three dimensional structure and chemical reactivity of tRNA. Nucl. Acids Res. I, 927–32.CrossRefGoogle Scholar
Robillard, G. T., Hilbers, C. W., Reid, B. R., Gangloff, G., Diluieimer, G. & Shulman, R. G. (1976 a). A study of secondary and tertiary solution structure of yeast tRNA&sP by NMR. Assignment of G.U ring NH and hydrogen bonded base proton resonances. Biochemistry, N. Y. 15, 1883–8.CrossRefGoogle Scholar
Robillard, G. T., Tarn, C. E. & Berendsen, H. J. C. (1976 b). Similarity of the crystal and solution structure of yeast tRNAPhe. Nature, Land. 262, 363–9.CrossRefGoogle ScholarPubMed
Rodley, G. A., Scobie, R. S., Bates, R. H. T. & Lewitt, R. M. (1976). A possible conformation for double-stranded polynucleotides. Proc. natn. Acad. Sci. U.S.A. 73, 2959–63.CrossRefGoogle ScholarPubMed
Römer, R. & Hach, R. (1975). tRNA conformation and magnesium binding. Eur. J. Biochem. 55, 271–84.CrossRefGoogle ScholarPubMed
Rordorf, B. F. & Kearns, D. R. (1976). NMR investigation of the base- pairing structure of Escherichia coli tRNAtyr monomer and dimer conformations. Biochemistry, N.Y. 15, 3320–30.CrossRefGoogle ScholarPubMed
Rosenberg, J. M., Seeman, N. C., Day, R. O. & Rich, A. (1976). RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3'5'-cytidine nonahydrate. J. molec. Biol. 104, 145–67.CrossRefGoogle ScholarPubMed
Rubin, J., Brennan, T. & Sundaralingam, M. (1972). Crystal and molecular structure of a naturally occurring dinucleoside monophosphate. Uridylyl-(3'-5')-adenosine hemihydrate. Conformational ‘rigidity’ of the nucleotide unit and models for polynucleotide chain folding. Biochemistry, N.Y. II, 3112–28.CrossRefGoogle Scholar
Rubin, H. & Kallenbach, N. R. (1975). Conformational statistics of short RNA chains. J. chem. Phys. 62, 2766–76.CrossRefGoogle Scholar
Saenger, W., Riecke, J. & Suck, D. (1975). A structural model for the poly A single helix. J. molec. Biol. 93, 529–34.CrossRefGoogle Scholar
Sakai, T. T. & Cohen, S. S. (1976). Effects of polyamines on the structure and reactivity of tRNA. Prog. nucleic Acid Res. & molec. Biol. 17, 1542.CrossRefGoogle ScholarPubMed
Sakore, T. D., Jain, S. C., Tsai, C. C. & Sobell, H. M. (1976). Mutagennucleic acid intercalative binding; structure of a 9 amino acridine: 5' iodocytidylyl 3',5'-guanosine crystalline complex. Proc. natn. Acad. Sci. U.S.A. 74, 188–92.CrossRefGoogle Scholar
Sänger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. natn. Acad. Sci. U.S.A. 73, 3852–6.CrossRefGoogle ScholarPubMed
Sasisekharan, V. (1973). Conformation of polynucleotides. In Jerusalem Symposia on Quantum Chemistry and Biochemistry (ed. Bergmann, E. D. and Pullman, B.), p. 247. New York: Academic Press.Google Scholar
Sasisekharan, V., Lakshminarayanan, A. V. & Ramachandran, G. N. (1967). In Conformation of Biopolymers (ed. Ramachandran, G. N.), p. 641. New York: Academic Press.CrossRefGoogle Scholar
Sato, T., Kyogoku, Y., Higurchi, S., Mitsui, Y., Iitaka, Y., Tsunoi, M. & Miua, K. I. (1966). A preliminary investigation on the molecular structure of Rice Dwarf virus ribonucleic acid. J. molec. Biol. 16, 180–90.CrossRefGoogle Scholar
Schleich, T., Cross, B. P., Blcknurn, B. J. & Smith, I. C. P. (1975 a). Elucidation of nucleic acid conformation by carbon-13 nuclear magnetic resonance spectroscopy. In Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Conformations (ed. Sundaralingam, M. and Rao, S. T.), pp. 223–52. Baltimore: University Park Press.Google Scholar
Schleich, T., Cross, B. P. & Smith, I. C. P. (1976). A conformational study of adenylyl (3'-5') adenosine and adenylyl (2'-5')-adenosine in aqueous solution by carbon-13 magnetic resonance spectroscopy. Nuci. Acid. Res. 3, 355–70.CrossRefGoogle Scholar
Schleich, T., Lusebrink, T. R., Cross, B. P. & Johnson, N. P. (1975 b). A PMR investigation of the glycosyl torsion angle of uracil nucleosides and nucleotides. Nucl. Acid Res. 2, 459–68.CrossRefGoogle Scholar
Schoemaker, H. J. P., Gamble, R. C., Budzik, G. P. & Schimmel, P. R. (1976). Comparison of isotope labelling patterns of properties in three specific tRNA's. Biochemistry, N.Y. 15, 2800–3.CrossRefGoogle Scholar
Schofield, P., Hoffman, B. M. & Rich, A. (1970). Spin-labelling studies of aminoacyl transfer ribonucleic acid. Biochemistry, N.Y. 9, 2525–33.CrossRefGoogle Scholar
Schreier, A. A. & Schimmel, P. R. (1974). Interaction of manganese with fragments, complementary fragment recombinations and whole molecules of yeast phenylalanine specific transfer RNA. J. molec. Biol. 86, 601–20.CrossRefGoogle ScholarPubMed
Schulman, L. H., Shapiro, R., Law, D. C. F. & Louis, J. B. (1974). A simplified method for study of RNA conformation-reaction of formylmethionine transfer RNA with [14C]methylamine-bisulphate. Nucl. Acids Res. I, 1305–16.CrossRefGoogle Scholar
Scruggs, R. L., Achter, E. K. & Ross, P. D. (1972). The thermodynamic effects of exposing nucleic acid bases to water: solubility measurements in water and organic solvents. Biopolymers II, 1961–72.CrossRefGoogle Scholar
Seals, A. A. & Champney, W. S. (1976). Conformational changes in Escherichia coli ribosomal RNA. Biochem. biophys. Res. Commun. 72, 753–60.CrossRefGoogle Scholar
Seeman, N. C., Day, R. O. & Rich, A. (1975). Nucleic acid-mutagen interactions: crystal structure of adenylyl-3',5'-uridine plus 9-aminoacridine. Nature, Lond. 253, 324–6.CrossRefGoogle ScholarPubMed
Seeman, N. C., Rosenberg, J. M., Suddath, F. L., Kim, J. J. P. & Rich, A. (1976). RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. J. molec. Biol. 104, 109–44.CrossRefGoogle ScholarPubMed
Seeman, N. C., Sussman, J., Berman, H. & Kim, S.-H. (1971). Crystal structure of a naturally occurring dinucleoside phosphate UpA. Nature, Lond. 233, 90–2.Google ScholarPubMed
Senear, A. W. & Steitz, J. A. (1976). Site specific interaction of Qβ host factor and ribosomal protein SI with Qβ and R17 bacteriophage RNA's. J. biol. Chem. 251, 1902–12.CrossRefGoogle Scholar
Seno, T., Kobayashi, M. & Nischimura, S. (1969). Characteristic behavior of S4U region of individual amino acid specific Escherichia coli tRNA's upon heat denaturation. Biochim. biophys. Acta 174, 7185.CrossRefGoogle Scholar
Shatkin, A. J. (1977). Capping of eukaryotic RNA's. Cell (in the Press).Google Scholar
Shibata, M., Ro-Choi, T. S., Reddy, R., Choi, Y. C., Henning, D. & Busch, H. (1975). The primary nucleotide sequence of nuclear U-2 ribonucleic acid. (5' terminal portion of the molecule) J. biol. Chem. 250, 3909–20.CrossRefGoogle ScholarPubMed
Shine, J. & Dalgarno, L. (1975 a). Determinant of cistron specificity in bacterial ribosomes. Nature, Lond. 254, 34–8.CrossRefGoogle ScholarPubMed
Shine, J. & Dalgarno, L. (1975 b). Terminal sequence analysis of bacterial ribosomal RNA. Correlation between 3'terminal polypyrimidine sequence of 16 S RNA and translational specificity of the ribosome. Eur. J. Biochem. 57, 221–30.CrossRefGoogle Scholar
Sigler, P. B.An analysis of the structure of tRNA. A. Rev. Biophys. Bioeng. 4, 477527.CrossRefGoogle Scholar
Sigler, P. B., Davies, D. R. & Miles, H. T. (1962). A displacement reaction between a polynucleotide helix and a random coil. J. molec. Biol. 5, 709–17.CrossRefGoogle Scholar
Singh, M., Herbut, M. H., Lee, C. H. & Sarma, R. H. (1976). Conformational features of 2'-O methyl adenosylyl adenosine. Biopolymers 15, 2167–84.CrossRefGoogle Scholar
Slack, J. M. W., Sartirana, M. L. & Loening, U. E. (1975). Multiple conformations of ribosomal precursor RNA. Nature, Lond. 253, 282–84.CrossRefGoogle ScholarPubMed
Smith, J. D. (1976). Transcription and processing of tRNA precursors. Prog. nucleic Acid Res. & molec. Biol. 16, 2574.CrossRefGoogle Scholar
Sommer, B.-S. & Jortner, J. (1969). Triplet-excition dynamics in polyadenylic acid. J. chem. Phys. 49, 3919–28.CrossRefGoogle Scholar
Spencer, M., Fuller, W., Wilkins, M. H. F. & Brown, G. L. (1962). Determination of the helical configuration of ribonucleic acid molecules by X-ray diffraction. Nature, Lond. 194, 1014–20.CrossRefGoogle ScholarPubMed
Spencer, M. & Poole, F. (1965). On the origin of crystallizable RNA from yeast. J. molec. Biol. II, 314–26.CrossRefGoogle Scholar
Spodheim, M. & Neumann, E. (1975). Ionic strength dependence of the hysteresis in the polyriboadenylate-polyriboadenylate system. Biophys. Chem. 3, 109–24.CrossRefGoogle ScholarPubMed
Stannard, B. S. & Felsenfeld, G. (1975). The conformation of poly (A) at low temperature and neutral pH. A single stranded rod-like structure. Biopolymers 14, 299307.CrossRefGoogle Scholar
Stein, A. & Crothers, D. M. (1976 a). Equilibrium binding of Mg(II) by Escherichia coli tRNAfmet. Biochemistry, N. Y. 15, 157–60.CrossRefGoogle Scholar
Stein, A. & Crothers, D. M. (1976 b). Conformational changes of tRNA. The role of Mg(II). Biochemistry, N.Y. 15, 160–67.CrossRefGoogle Scholar
Steitz, J. A. (1969). Polypeptide chain initiation: Nucleotide sequences of the ribosomal binding sites in bacteriophage R17 RNA. Nature, Lond. 224, 957–64.CrossRefGoogle ScholarPubMed
Steitz, J. A. & Jakes, K. (1975). How ribosomes select initiator regions in mRNA. Base pair formation between the 3'terminus of 16 S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 72, 4734–8.CrossRefGoogle Scholar
Stellman, S. D., Broyde, S. B. & Wartell, R. M. (1976). Influence of ribose O-methylation on GpC conformation by classical potential energy calculations. Biopolymers 15, 1951–64.CrossRefGoogle ScholarPubMed
Stellman, S. D., Hingerty, B., Broyde, S. B., Subramanian, E., Sato, T. & Langridge, R. (1973). Structure of guanosine 3'5' cytidine monophosphate. I. Semi-empirical potential energy calculations and model building. Biopolymers 12, 2731–50.CrossRefGoogle Scholar
Stevens, C. L. & Felsenfeld, G. (1964). The conversion of two stranded poly (A+U) to three stranded poiy (A+2U) and poiy A by heat. Biopolymers 2, 293314.CrossRefGoogle Scholar
Stout, C. D., Mizuno, H., Rubin, J., Brennan, T., Rao, S. T. & Sundaralingam, M. (1976). Atomic coordinates and molecular conformation of yeast phenylalanyl tRNA. An independent investigation. Nuel. Acids Res. 3, 1111–23.CrossRefGoogle ScholarPubMed
Suck, D., Manor, P. C. & Saenger, W. (1976). The structure of a tninucleoside diphosphate, adenylyl-(3'-5')-adenylyl-(3'-5')-adenosine hexahydrate. Acta crystallogr. B 32, 1727–37.CrossRefGoogle Scholar
Sundaralingam, M. (1965). Conformation of the furanose ring in nucleic acids and other carbohydrate derivatives in the solid state. J. Am. chem. Soc. 87, 599606.CrossRefGoogle ScholarPubMed
Sundaralingam, M. (1969). Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleotides, mono-di-, tri-, tetraphosphates, nucleic acids and poiynucleotides. Biopolymers 7, 821–60.CrossRefGoogle Scholar
Sundaralingam, M. (1975). Principles governing nucleic acid and polynucleotide conformations. In Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Conformations (ed. Sundaralingam, M. and Rao, S. T.), pp. 487524. Baltimore: University Park Press.Google Scholar
Sussman, J. L. & Kim, S. H. (1976 a). Idealized atomic coordinates of yeast phenylalanine transfer RNA. Biochem. biophys. Res. Comm. 68, 8996.CrossRefGoogle ScholarPubMed
Sussman, J. L. & Kim, S. H. (1976 b). Three-dimensional structure of a transfer RNA in two crystal forms. Science, N.Y. 192, 853.CrossRefGoogle ScholarPubMed
Sussman, J. L., Seeman, N. C., Kim, S. H. & Berman, H. M. (1972). Crystal structure of a naturally occurring dinucleoside phosphate: uridylyl 3',5'-adenosine phosphate. Model for RNA chain folding. J. molec. Biol. 66, 403–21.CrossRefGoogle ScholarPubMed
Teitelbaum, H. & Englander, S. W. (1975 a) Open states in native polynucleotides. I. Hydrogen-exchange study of adenine-containing double helices. J. molec. Biol. 92, 5578.CrossRefGoogle ScholarPubMed
Teitelbaum, H. & Englander, S. W. (1975 b). Open states in native polynucleotides. II. Hydrogen-exchange study of cytosine-containing double helices. J. molec. Biol. 92, 7992.CrossRefGoogle ScholarPubMed
Tewari, R., Nanda, R. K. & Govil, G. (1974). Spatial configurations of single stranded polynucleotides calculations of average dimensions and NMR coupling constants. Biopolymers 13, 2015–35.CrossRefGoogle ScholarPubMed
Thomas, G. J. Jr, (1975). Structural studies of nucleic acids and polynucleotides by laser Raman spectroscopy. In Structure and Conformation of Nucleic Acids and Protein Nucleic Acid Interactions (ed. Sundaralingam, M. and Rao, S. T.), pp. 253–81. Baltimore: University Park Press.Google Scholar
Thomas, G. J. Jr, Chen, M. C., Lord, R. C., Kotsiopaulos, P. S., Tritton, T. R. & Mohr, S. C. (1973). Transfer RNA change of conformation upon aminoacylation determined by Raman spectroscopy. Biochem. biophys. Res. Comm. 24, 570–7.CrossRefGoogle Scholar
Thomas, G. J. Jr, Prescott, B., McDonald-Ordzie, P. E. & Hartman, K. A. (1976). Studies of virus structure by laser Raman spectroscopy. II. MS2 phage, MS2 capsids and MS2 RNA in aqueous solutions. J. molec. Biol. 102, 103–24.CrossRefGoogle ScholarPubMed
Thrierr, J. C., Dourlent, M. & Leng, M. (1971). A study of poly (U). J. molec. Biol. 58, 815–30.CrossRefGoogle Scholar
Tinoco, I. Jr, Borer, P. N., Dengler, B., Levine, M. D., Uhlenbecic, O. C., Crothers, D. M. & Gralla, J. (1973). Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 246, 40–1.CrossRefGoogle ScholarPubMed
Tinoco, I. Jr, Ublenbeck, O. C. & Levine, M. D. (1971). Estimation of secondary structure in ribonucleic acids. Nature, Lond. 230, 362–67.CrossRefGoogle ScholarPubMed
Tinoco, I. Jr, Woody, R. W. & Bradley, D. F. (1963). Absorption and rotation of light by helical polymers: the effect of chain length. J. chem. Phys. 38, 1317–25.CrossRefGoogle Scholar
Tollin, P. & Wilson, H. R. (1971). Some observations on the structure of the campinas strain of tobacco rattle virus. J. gen. Virol. 13, 433–40.CrossRefGoogle ScholarPubMed
Tomita, K.-I. & Rich, A. (1964). X-ray diffraction investigations of complementary RNA. Nature, Lond. 201, 1160–3.CrossRefGoogle ScholarPubMed
Topal, M. D. & Warshaw, M. M. (1976 a). Dinucleotide monophosphates. I. Optical properties and conformation in solution with one base charged. Biopolymers 15, 1755–74.CrossRefGoogle Scholar
Topal, M. D. & Warshaw, M. M. (1976 b). Dinucleotide monophosphates. II. Nearest neighbor interactions. Biopolymers 15, 1775–94.CrossRefGoogle Scholar
Torrence, P. F., Bobst, A. M., Waters, J. A. & Witkop, B. (1973). Synthesis and characterization of potential interferon inducers. Poly (2'-azido-2'-deoxy-uridylic acid). Biochemistry, N.Y. 12, 3962–72.CrossRefGoogle ScholarPubMed
Torrence, P. F., Clercq, E. D. & Witkop, B. (1976). Triple helical polynucleotides. Mixed triplexes of the poly(U). poly(A). poly(U) class. Biochemistry, N.Y. 15, 724–33.CrossRefGoogle Scholar
Torrence, P. F. & Witkop, B. (1975). Polynucleotide duplexes based on poly(7-deaza-adenylic acid). Biochim. biophys. Acta 395, 5666.CrossRefGoogle ScholarPubMed
Tsai, C. C., Jain, S. C. & Sobell, H. M. (1975). X-ray crystallographic visualization of drug-nucleic acid intercalative binding. Structure of an ethidium-dinucleoside monophosphate. Crystalline complex, ethidium: 5-iodouridylyl (3'-5') adenosine. Proc. natn. Acad. Sci. U.S.A. 72, 628–32.CrossRefGoogle Scholar
Ts'o, P. O. P. Oligonucleotides. In Basic Principles in Nucleic Acid Chemütry (ed. Ts'o, P. O. P.), pp. 305469. New York: Academic Press.Google Scholar
Ts'o, P. O. P., Melvin, I. S. & Olson, A. C. (1963). Interaction and association of bases and nucleosides in aqueous solutions. J. Am. chem. Soc. 85, 1289–96.CrossRefGoogle Scholar
Uesugi, S., Tezuka, T. & Ikehara, M. (1976). Polynucleotides. XXX. Synthesis and properties of oligonucleotides of cyclouridine phosphate. Hybridization with the oligomer of S-cycloadenosine phosphate to form left-handed helical complexes. J. Am. them. Soc. 98, 969–73.CrossRefGoogle ScholarPubMed
Uhlenbeck, O. C., Borer, P. N., Dengler, B. & Tinoco, I. Jr, (1973). Stability of RNA hairpin loops: A6-CmU6 (m = 4, 5, 6 or 8). J. molec. Biol. 73, 483–96.CrossRefGoogle Scholar
Uhlenbeck, O. C., Martin, F. H. & Doty, P. (1971). Self-complementary oligoribonucleotides: Effects of helix defects and guanylic acid-cytidylic acid base pairs. J. molec. Biol. 57, 217–29.CrossRefGoogle ScholarPubMed
Urbanke, C., Römer, R. & Maass, G. (1975). Tertiary structure of tRNAphe (yeast): Kinetics and electrostatic repulsion. Eur. J. Biochem. 55, 439–44.CrossRefGoogle ScholarPubMed
Van, N. T., Holder, J. W., Woo, S. L. C., Means, A. R. & O'Malley, B. W. (1976). Secondary structure of ovalbumin mRNA. Biochemistry, N.Y. 15, 2054–62.Google Scholar
Van, Holde K. E., Brahms, J. & Michelson, A. M. (1965). Base interactions of nucleotide polymers in aqueous solution. J. molec. Biol. 12, 726–39.Google Scholar
Van, Holde K. E. & Rossetti, G. P. (1967). A sedimentation equilibrium study of the association of purine in aqueous solutions. Biochemistry, N.Y. 6, 2189–94.Google Scholar
Voet, D. & Rich, A. (1970). The crystal structures of purines, pyrimidines and their intermolecular complexes. Prog. nucleic. Acid Res. & molec. Biol. 10, 183265.CrossRefGoogle ScholarPubMed
Vollenweider, H. J., Sogo, J. M. & Koller, T. (1975). A routine method for protein free spreading of double and single stranded nucleic acid molecules. Proc. natn. Acad. Sci. U.S.A. 72, 83–7.CrossRefGoogle ScholarPubMed
Wang, A. C. & Kallenbach, N. R. (1971). Helical complexes of polyriboinosinic acid with copolymers of polyribocytidylic acid containing inosine, adenosine and uridine residues. J. molec. Biol. 62, 591607.CrossRefGoogle ScholarPubMed
Warshaw, M. M. & Tinoco, I. Jr, (1965). Absorption and optical rotatory dispersion of six dinucleoside phosphates. J. molec. Biol. 13, 5464.CrossRefGoogle ScholarPubMed
Warshaw, M. M. & Tinoco, I. Jr, (1966). Optical properties of sixteen dinucleoside phosphates. J. molec. Biol. 20, 2938.CrossRefGoogle ScholarPubMed
Warshel, A. & Levitt, M. (1976). Theoretical studies of enzymic reactions: dielectric electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. molec. Biol. 103, 227–50.CrossRefGoogle ScholarPubMed
Watanabe, K. & Imahori, K. (1971). The conformation difference between tRNAfmet and formylmethionyl-tRNAfmet from Escherichia coli. Biochem. biophys. Res. Comm. 45, 488–94.CrossRefGoogle Scholar
Watanabe, K., Shinma, M., Oshima, T. & Nishimura, S. (1976). Heat-induced stability of tRNA from an extreme thermophile: thermus thermophilus. Biochem. biophys. Res. Comm. 72, 1137–44.CrossRefGoogle ScholarPubMed
Weissmann, C., Billeter, M. A., Goodman, H. M., Hindley, J. & Weber, H. (1973). Structure and function of phage RNA. A. Rev. Biochem. 42, 303–28.CrossRefGoogle ScholarPubMed
Westhof, E., Röder, O., Croneiss, I. & Lüdemann, M. D. (1975). Ribose conformations in the common purine(β) ribosides, in some antibiotic nucleosides and in some isopropylidene derivatives: a comparison. Z. Naturf. 30C, 131–40.CrossRefGoogle Scholar
Wickstrom, E. & Tinoco, I. Jr, (1974). The stability of RNA hairpin loops containing AUG: AnUGUm. Biopolymers 13, 2367–83.CrossRefGoogle ScholarPubMed
Wilson, H. R. (1966). Diffraction of X-rays by Protein Nucleic Acids and Viruses. London: Edward Arnold.Google Scholar
Wilson, H. R. (1975). Conformations of nucleosides, nucleotides and nucleic acids. In Structure and Conformation of Nucleic Acids and Protein Nucleic Acid Interactions (ed. Sundaralingam, M. and Rao, S. T.), pp. 525–36. Baltimore: University Park Press.Google Scholar
Wilson, H. R., Tollin, P. (1969). Some observations on the structure of potato virus X. J. gen. Virol. 5, 151–4.CrossRefGoogle Scholar
Wilson, H. R. & Tollin, P. & Rahman, A. (1973). The structure of narcissus mosaic virus. J. gen. Virol. 18, 181–7.CrossRefGoogle Scholar
Witz, J. & Luzzati, V. (1965). La structure des acides polyadenylique et polyuridilique en solution: étude par diffusion centrale des rayons X. J. molec. Biol. II, 620–30.CrossRefGoogle Scholar
Woese, C. R., Fox, G. E., Zablen, L., Ochida, T., Bonen, L., Pechman, K., Lewis, B. J. & Stahl, B. (1975). Conservation of primary structure in 16 S rRNA. Nature, Lond. 254, 83–4.CrossRefGoogle Scholar
Wong, K. L. & Kearns, D. R. (1974). NMR evidence for tertiary structure base pair in Escherichia coli tRNA involving s4U8. Nature, Lond. 252, 738–39.CrossRefGoogle ScholarPubMed
Wong, U. P., Kearns, D. R., Reid, B. R. & Shulman, R. G. (1972). Investigation of exchangeable protons and the extent of base pairing in yeast tRNAPhe by high resolution NMR. J. molec. Biol. 72, 725–40.CrossRefGoogle Scholar
Yaniv, M., Favre, A. & Barrell, B. G. (1969). Evidence for interaction between two non-adjacent nucleotide residues in tRNA1val from Escherichia coil. Nature, Land. 223, 1331–33.CrossRefGoogle Scholar
Yathindra, N. & Sundaralingam, M. (1973 a). Correlation between the backbone and side chain conformations in 5'-nucleotides. The concept of a ‘rigid’ nucleotide conformation. Biopolymers 12, 297314.CrossRefGoogle Scholar
Yathindra, N. & Sundaralingam, M. (1973 b). Conformational studies on the guanosine nucleotides and polynucleotides. The effect of the base on the glycosyl and backbone conformations. Biopolymers 12, 2075–82.CrossRefGoogle ScholarPubMed
Yathindra, N. & Sundaralingam, M. (1973c). Conformational studies on pyrimidine 5'-monophosphates and 3',5'-diphosphates. Effect of the phosphate groups on the backbone conformation of polynucleotides. Biopolymers 12, 2261–77.CrossRefGoogle Scholar
Yathindra, N. & Sundaralincam, M. (1974). Backbone conformations in secondary and tertiary structural units of nucleic acids. Constraint in the phosphodiester conformation. Proc. natn. Acad. Sci. U.S.A. 71, 3325–8.CrossRefGoogle ScholarPubMed
Yathindra, N. & Sundaralingam, M. (1976). Analysis of the possible helical structures of nucleic acids and polynucleotides. Application of (n – h) plots. Nucl. Acids Res. 3, 729–48.CrossRefGoogle Scholar
Yoon, K., Turner, D. M., Tinoco, I. Jr., Vonder, Haar F. & Cramer, F. (1976). The kinetics of binding of U-U-C-A to a dodecanucleotide anticodon fragment from yeast tRNAPhe. Nucl. Acids Res. 3, 2233–42.CrossRefGoogle Scholar
Yuki, A. & Brimacombe, R. (1975). Nucleotide sequences of Escherichia coli 16 S RNA associated with ribosomal proteins S7, S9, S10, S14 and S19. Eur. J. biochem. 56, 2334.CrossRefGoogle ScholarPubMed
Zachau, H. G., Streeck, R. E. & Hänggi, V. J. (1973). Conformational states of transfer ribonucleic acids. In Gene Expression and its Regulation (ed. Kenney, F. T., Hamkalo, B. A., Favelukes, G. and August, J. T.), pp. 217–28. New York: Plenum Press.CrossRefGoogle Scholar
Zimmerman, R. A., Mackie, G. A., Muto, A., Garrett, R. A., Ungewickell, E., Ehresman, C., Steigler, P., Ebel, J. P. & Fellner, P. (1975). Location and characteristics of ribosomal binding sites in the 16 S RNA of Escherichia coil. Nucl. Acids Res. 2, 279302.CrossRefGoogle Scholar
Zimmerman, S. B. (1976). X-ray study by fiber diffraction methods of a self-aggregate of guanosme-5'-phosphate with the same helical parameters as poly(rG). J. molec. Biol. 106, 663–72.CrossRefGoogle ScholarPubMed
Zimmerman, S. B., Cohen, G. H. & Davies, D. R. (1975). X-ray fiber diffraction and model-building study of poly (G) and poly (I). J. molec. Biol. 92, 181–92.CrossRefGoogle Scholar
Zubay, G. & Wilkins, M. H. F. (1960). X-ray diffraction studies of the structure of ribosomes from Escherichia coil. J. molec. Biol. 2, 105–12.CrossRefGoogle Scholar