Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T20:42:21.314Z Has data issue: false hasContentIssue false

Spectroscopic studies on two-iron ferredoxins

Published online by Cambridge University Press:  17 March 2009

R. H. Sands
Affiliation:
Department of Physics and Biophysics Research Division, University of Michzgan, Ann Arbor, MI 48104 U.S.A.
W. R. Dunham
Affiliation:
Department of Physics and Biophysics Research Division, University of Michzgan, Ann Arbor, MI 48104 U.S.A.

Extract

The application of magnetic resonance techniques to biological systems has permitted a detailed study of the nature of the active sites of many proteins that had not been possible previously. Among these is the whole class of iron—sulphur proteins which have been implicated as electron transport proteins in a variety of fundamental processes: photosynthesis, hydroxylation and nitrogen fixation to name but a few.

The single-iron proteins in this class, the rubredoxins, have been studied extensively by chemical, spectroscopic and X-ray crystallographic techniques (Lovenberg, 1973), and the active site is composed of a single iron atom bound in a distorted tetrahedron of cysteine sulphur ligands. The iron is high-spin ferric in the oxidized state and high-spin ferrous in the reduced state. This structure is shown in Fig. I (α).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abragram, A. & Bleaney, B. (1970). EPR of Transition Ions. London, New York: Oxford University Press (Clarendon).Google Scholar
Aggarwal, S. T., Rao, K. K. & Matsubara, H. (1971). Horsetail ferredoxin: isolation and some chemical studies. J. Biochem. 69, 601.Google ScholarPubMed
Anderson, R. E. (1972). Study of the active sites of ferrodoxin from Synechococcus lividus. Thesis, University of Michigan, Ann Arbor, Michigan, U.S.A. Available from University Microfilms, 300 No. Zeeb Road, Ann Arbor, Michigan 48103 order no. 73–11032.Google Scholar
Anderson, R. E., Sands, R. H. & Crespi, H. (1974). In preparation.Google Scholar
Ayscough, P. B. (1967). Electron Spin Resonance in Chemistry. London:Methuen.Google Scholar
Beinert, H. & Orme-Johnson, W. H. (1960). Electron–nuclear and electron– electron spin interactions in the study of enzyme structure and function. Ann. N.Y. Acad. Sci. 158, 336.CrossRefGoogle Scholar
Bersohn, M. & Baird, J. C. (1966). An Introduction to EPR. New York:Benjamin.Google Scholar
Brintzinger, H., Palmer, G. & Sands, R. H. (1966 a). An electron paramagnetic resonance study of metal-aromatic bonding in Bis(hexamethylbenzene) iron (I). J. Am. Chem. Soc. 88, 623.CrossRefGoogle Scholar
Brintzinger, H., Palmer, G. & Sands, R. H. (1966 b). The ligand field or iron in ferredoxin from spinach chloroplasts and related non heme iron enzymes. Proc. natn. Acad. Sci. U.S.A. 55, 397.CrossRefGoogle ScholarPubMed
Carrington, A. & Mclachlan, A. C. (1967). Introduction to Magnetic Resonance. New York: Harper.Google Scholar
De Benedetti, S., De, S. Barros F. & Hoy, G. R. (1966). Chemical and structural effects on nuclear radiations. Am. Rev. Nucl. Sci. 16, 31.CrossRefGoogle Scholar
Der, Vartanian D. V., Orme-Johnson, W. H., Hansen, R. E., Beinert, H., Tsai, R. L., Tsibris, J. C., Bartholomaus, R. C. & Gunsalus, I. C. (1967). Identification of sulfur as component of the EPR signal at g = 1·94 by isotopic substitution. Biochem. biophys. Res. Commun. 26, 569.Google Scholar
Dunham, W. R. (1970). The active center of the plant-type ferredoxins: studies by Mössbauer spectroscopy. Thesis, University of California, La Jolla, California. University Microfilms no. 70–19.CrossRefGoogle Scholar
Duham, W. R., Bearden, A., Salmeen, I., Palmer, G., Sands, R. H., Orme-Johnson, W. H. & Beinert, H. (1971 a). The 2-iron ferredoxins in spinach, parsley, pig adrenal cortex, Azotobacter vinelandii and Clostridium pasteurianum: studies by Magnetic field Mössbauer spectroscopy. Biochim. biophys. Acta 253, 134.Google Scholar
Dunham, W. R., Palmer, G., Sands, R. H., Bearden, A. J., Beinert, H. & Orme-Johnson, W. H. (1971 b). Comments on ‘The interpretation of the EPR and Mössbauer spectra of two-iron, one-electron iron-sulfur proteins’. Biochem. biophys. Res. Commun. 45, 1119.CrossRefGoogle ScholarPubMed
Dunham, W. R., Palmer, G., Sands, R. H. & Bearden, A. J. (1971 c). On the structure of the iron-sulphur complex in the 2-iron ferredoxins. Biochim. Biophys. Acta 253, 373.CrossRefGoogle Scholar
Eaton, W. A., Palmer, G., Fee, J. A., Kimura, T. & Lovernberg, W. (1971). Tetrahedral iron in the active center of plant ferredoxins and beef adrenodoxin. Proc. natn. Acad. Sci. U.S.A. 68, 3015.CrossRefGoogle ScholarPubMed
Feher, G., Isaacson, R. A., Scholes, C. P. & Hazel, R. (1972). Electron nuclear double resonance (ENDOR) investigation on myoglobin and hemoglobin. Ann. N.Y. Acad. Sd. Proc. Fifth Intt. Conf.: Magnetic Resonance in Biological Systems, New York, 4812 1972.Google Scholar
Fritz, J., Anderson, R., Fee, J., Palmer, G., Sands, R. H., Orme-Johnson, W. H., Beinert, H., Tsibris, J. C. M. & Gunsalus, I. C. (1971). The iron electron-nuclear double resonance (endor) of 2-iron ferredoxins from spinach, parsley, pig adrenal cortex and Pseudomonas putida. Biochim. biophys. Acta 253, 110.CrossRefGoogle Scholar
Fry, K. T., Lazarini, R. A. & San, Pietro A. (1963). The photoreduction of iron in photosynthetic pyridine nucleotide reductase. Proc. natn. Acad. Sd. U.S.A. 50, 652.CrossRefGoogle ScholarPubMed
Gersmann, H. R. & Swalen, J. D. (1962). Electron paramagnetic resonance spectra of copper complexes. J. Chem. Phys. 36, 3221.CrossRefGoogle Scholar
Gibson, J. F., Hall, D. O., Thornley, J. H. M. & Whatley, F. R. (1966). The iron complex in spinach ferredoxin. Proc. natn. Acad. Sci. U.S.A. 56, 987.CrossRefGoogle ScholarPubMed
Gruber, S. J., Harris, C. M. & Sinn, E. (1968). Metal complexes as ligands. VI. Antiferromagnetic interactions in trinuclear complexes containing similar and dissimilar metals. J. Chem. Phys. 49, 2183.CrossRefGoogle Scholar
Hall, D. O. & Evans, M. C. W. (1969). Iron-sulphur proteins. Nature, Lond. 223, 1342.CrossRefGoogle ScholarPubMed
Herskovitz, T., Averill, B. A., Holm, R. H., Ivers, J. A., Phillips, W. D. & Weiher, J. F. (1972). Structure and properties of a synthetic analogue of bacterial iron–sulphur proteins. Proc. natn. Acad. Sd. U.S.A. 69, 2437.CrossRefGoogle Scholar
Hudson, A. (1971). Nuclear hyperfine interactions in trimeric clusters. Molec. Phys. 21, 61.CrossRefGoogle Scholar
Kneubühl, F. K. & Natterer, B. (1961). Paramagnetic resonance intensity of anisotropic substances and its influence on line shapes. Helv. Phys. Acta 34, 710.Google Scholar
Lang, G. (1970). Mössbauer spectroscopy of haem proteins. Q. Rev. Biophys. 3, I.CrossRefGoogle ScholarPubMed
La, Mar G. N., Eaton, G. R., Holm, R. H. & Walker, F. A. (1973). Proton magnetic resonance investigation of antiferromagnetic oxy-bridged ferric dimers and related high-spin monomeric ferric complexes. J. Am. Chem. Soc. 95, 63.Google Scholar
Lippard, S. J. (1972). Iron–sulfur coordination compounds and proteins. Accts Chem. Res. 6, 282.CrossRefGoogle Scholar
Lovenberg, W. (ed.) (1973). Iron–sulfur Proteins. New York, London: Academic Press.Google Scholar
Malley, M. M. (1965). Electron paramagnetic resonance lineshapes of randomly oriented fixed molecules. I. Axially symmetric g−tensor and hyperfine interactions. J. Molec. Spectrosc. 17, 210.CrossRefGoogle Scholar
Mayerle, J. J., Frankel, R. B., Holm, R. H., Ibers, J. A., Phillips, W. & Weiher, J. F. (1973). Synthetic analogs of the active sites of iron–sulfur proteins. Structure and properties of Bis [o-xyldithiolate-u2-sulfldoferrate (III)].An analog of the 2Fe-2S proteins. Proc. natn. Acad. Sci. U.S.A. 70, 2429.CrossRefGoogle Scholar
Mayhew, S. G., Petering, D., Palmer, G. & Foust, G. (1969). Spectrophotometric titration of ferredoxins and chromatium high potential iron protein with sodium dithionite. J. biol. Chem. 244, 2830.CrossRefGoogle ScholarPubMed
Moriya, T. (1960). Anisotropic super exchange interaction and weak ferromagnetism. Phys. Rev. 120, 91.CrossRefGoogle Scholar
Moss, T. H., Petering, D. & Palmer, G. (1969). The gnetic susceptibility of oxidized and reduced ferredoxin from spinach and parsley and the high potential protein from chromatium. J. biol. Chem. 244, 2275.CrossRefGoogle Scholar
Munck, E., Debrunner, P. G., Tsibris, J. C. M. & Gunsalus, I. C. (1972). Mössbauer parameters of putidaredoxin and its selenium analog. Biochemistry, N.Y. 11, 855.CrossRefGoogle ScholarPubMed
Neiman, R. & Kivelson, D. (1961). ESR line shapes in glasses of copper complexes. J. Chem. Phys. 35, 156.CrossRefGoogle Scholar
Newman, D. J., Ihle, J. N. & DureIII, L. III, L. (1969). Chemical composition of a ferredoxin isolated from cotton. Biochem. biophys. Res. Commun. 36, 947.CrossRefGoogle ScholarPubMed
Orme-Jhonson, W. H. & Beinert, H. (1969 a). The magnetic susceptibility of oxidised and reduced ferredoxins from spinach and parsley and the high potential protein from chromatium. J. biol. Chem. 244, 6143.Google Scholar
Orme-Johnson, W. H. & Beinert, H. (1969 b). Heterogeneity of paramagnetic species in two iron–sulfur proteins: Clostridium pasteurianum ferredoxin and milk xanthine oxidase. Biochem. biophys. Res. Commun. 36, 337.CrossRefGoogle ScholarPubMed
Orme-Johnson, W. H., Hansen, R. E., Beinert, H., Tsibiris, J. C. M., Bartholomaus, R. C. & Gunsalus, I. C. (1968). On the sulphur components of iron–sulphur proteins. i. The number of acid–labile sulphur groups sharing an unpaired electron with iron. Proc. natn. Acad. Sci. U.S.A. 60, 368.CrossRefGoogle ScholarPubMed
Owen, J. (1972). Chapter 6, sect. 5 in Electron Paramagnetic Resonance (ed. Geschwind, S.). Plenum.Google Scholar
Palmer, G., Dunham, W. R., Fee, J. A., Sands, R. H., Iikuza, T. & Yonetani, I. (1971). The magnetic susceptibility of spinach ferredoxin from 77–250 °K: A measurement of the antiferromagnetic coupling between the two iron atoms. Biochim. biophys. Acta 245, 201.CrossRefGoogle Scholar
Palmer, G. & Sands, R. H. (1966). On the magnetic resonance of spinach ferredoxin. J. biol. Chem. 241, 253.CrossRefGoogle ScholarPubMed
Peisach, J., Blumberg, W. E., Lode, E. T. & Coon, M. J. (1971). An analysis of the electron paramagnetic resonance spectrum of Pseudomonas oleovorans rubredixon. J. biol. Chem. 246, 5877.CrossRefGoogle Scholar
Petering, D. H., Fee, J. A. & Palmer, G. (1970). The oxygen sensitivity of spinach ferredoxin and other iron sulphur proteins. J. biol. Chem. 246, 643.CrossRefGoogle Scholar
Petering, D. H. & Palmer, G. (1970). Properties of spinach ferredoxin in anaerobic urea solutions: a comparison with the native protein. Archs Biochem. 141, 456.CrossRefGoogle ScholarPubMed
Poe, M., Philips, W. D., Glickson, J. D. & San, Pietro A. (1971). Proton magnetic resonance studies of the ferredoxins from spinach and parsley. Proc. natn. Acad. Sci. U.S.A. 68, 68.CrossRefGoogle ScholarPubMed
Salmeen, I. T. (1970). The interpretation of electron paramagnetic resonance and Mössbauer spectra of iron–sulfur proteins of the plant ferredoxin type. Thesis, University of Michigan, Ann Arbor, Michigan, U.S.A. Available from University Microfilms, 300 No, Zeeb Road, Ann Arbor, Michigan 48103, order No. 704181.Google Scholar
Salmeen, I. T. & Palmer, G. (1972). Contact-shifted NMR of spinach ferredoxin additional resonances and partial assignments. Archs Biochem. Biophys. 150, 767.CrossRefGoogle ScholarPubMed
Shethna, Y. I., Wilson, P. W., Hansen, R. E. & Beinert, H. (1964). Identification by isotopic substitution of the EPR signal at g = 1·94 in a non-heme iron protein from Azotobacter. Proc. natn. Acad. Sci. U.S.A. 52, 1263.CrossRefGoogle Scholar
Sieker, L. C., Adman, E. & Jensen, L. H. (1973). Structure of the Fe–S complex in a bacterial ferredoxin. Nature Lond. 235, 40.CrossRefGoogle Scholar
Singer, T. P. & Massey, V. (1957). Experimental foundations of the concept of metal-flavo protein catalysis. Rec. Chem. Frog. 18, 201.Google Scholar
Stahs, G. & Kraut, J. (1968). Low resolution electron-density and anomalous- scattering-density maps of chromatium high potential iron protein. J. molec. Biol. 35, 503.CrossRefGoogle Scholar
Thornley, J. H. M., Gibson, J. F., Whatley, F. R. & Hall, D. O. (1966). Comment on a recent model of the iron complex in spinach ferredoxin. Biochem. biophys. Res. Commun. 24, 877.CrossRefGoogle ScholarPubMed
Tsibris, J. C. M., Tsai, R. L., Gunsalus, I. C., Orne-Johnson, W. H., Hansen, R. E. & Beinert, H. (1968). The number of iron atoms in the paramagnetic center (g = 1.94) of reduced putideredoxin, a non heme iron protein. Proc. natn. Acad. Sci. U.S.A. 59, 959.CrossRefGoogle Scholar
Werts, J. E. & Bolton, J. R. (1972). Electron Spin Resonance, Elementary Theory and Practical Applications. New York: McGraw-Hill.Google Scholar