Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T17:10:46.224Z Has data issue: false hasContentIssue false

Absolute geomagnetic intensity determinations on Formative potsherds (1400–700 BC) from the Oaxaca Valley, Southwestern Mexico

Published online by Cambridge University Press:  17 September 2012

Marie Pétronille*
Affiliation:
Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Campus Morelia, Mexico
Avto Goguitchaichvili
Affiliation:
Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Campus Morelia, Mexico Laboratorio de Paleomagnetismo, Departamento de Física, Escuela Politécnica Superior, Universidad de Burgos, C/Francisco De Vitoria, s/n, 09006, Burgos, Spain
Juan Morales
Affiliation:
Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Campus Morelia, Mexico
Claire Carvallo
Affiliation:
Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, Paris, France
Yuki Hueda-Tanabe
Affiliation:
WWF Programa Oaxaca, Mexico
*
Corresponding author. Email Address:marie.petronille@wanadoo.fr

Abstract

New Thellier-Coe archeointensity determinations have been measured on 15 potsherds from the Oaxaca Valley belonging to three of the four Formative Periods (Pre-Classical) of Mesoamerica, spanning 1400–700 BC. Seven of these are considered to be reliable and indicate a geomagnetic field strength of about 30 μT. This value is some 75% of the present geomagnetic field strength but is in agreement with the absolute intensities predicted from global models for this time and location, and consistent with coeval published determinations. These data thus provide significant evidence for the geomagnetic field strength in an area and for a time that was previously poorly constrained, thus providing an important contribution towards establishing a local master curve for the last 3500 yr. When established, such a curve would be a useful dating tool and also enable establishing for field strength correlations with climatic events and civilization evolutions in a region that is particularly strong in archeological and geological features. Such potential is examined for aridity events, although such observations can only be considered tentative at this stage.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alva-Valdivia, L.M. Comprehensive paleomagnetic study of a succession of Holocene olivine-basalt flow: Xitle Volcano (Mexico) revisited. Earth, Planets and Space 57, (2005). 839853.CrossRefGoogle Scholar
Alva-Valdivia, L.M., Morales, J., Goguitchaichvili, A., Popenoe de Hatch, M., Hernandez-Bernal, M.S., and Mariano-Matias, F. Absolute geomagnetic intensity data from preclassic Guatemalan pottery. Physics of the Earth and Planetary Interiors 180, (2010). 4151.CrossRefGoogle Scholar
Carvallo, C., Roberts, A.P., Leonhardt, R., Laj, C., Kissel, C., Perrin, M., and Camps, P. Increasing the efficiency of paleointensity analyses by selection of samples using first-order reversal curve diagrams. Journal of Geophysical Research 111, (2006). B12103 http://dx.doi.org/10.1029/2005JB004126 CrossRefGoogle Scholar
Chauvin, A., Garcia, A., Lanos, P., and Laubenheimer, F. Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Physics of the Earth and Planetary Interiors 120, (2000). 111136.CrossRefGoogle Scholar
Chauvin, A., Roperch, P., and Levi, S. Reliability of geomagnetic paleointensity data: the effects of the NRM fraction and concave-up behavior on paleointensity determination by Thellier method. Physics of the Earth and Planetary Interiors 150, (2005). 265286.CrossRefGoogle Scholar
Coe, R.S. Paleo-intensities of the Earth's magnetic field determined from Tertiary and Quaternary rocks. Journal of Geophysical Research 72, 12 (1967). 32473262. http://dx.doi.org/10.1029/JZ072i012p03247 CrossRefGoogle Scholar
Coe, R.S., Gromme, S., and Mankinen, E.A. Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low. Journal of Geophysical Research 83, B4 (1978). 17401756. http://dx.doi.org/10.1029/JB083iB04p01740 CrossRefGoogle Scholar
Conte-Fasano, G.S., Urrutia-Fucugauchi, J., Goguitchaichvili, A., and Morales-Contreras, J. Low-latitude paleosecular variation and the time-averaged field during the late Pliocene and Quaternary: paleomagnetic study of the Michaocan-Guanajuato volcanic field, Central Mexico. Earth, Planets and Space (2006). 13591371.CrossRefGoogle Scholar
Courtillot, V., Gallet, Y., Le Mouël, J.-L., Fluteau, F., and Genevey, A. Are there connections between the Earth's magnetic field and climate?. Earth and Planetary Science Letters 253, (2007). 328339.CrossRefGoogle Scholar
Curtis, J.H., Hodell, D.A., and Brenner, M. Climate variability on the Yucatan peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quaternary Research 46, (1996). 3747.CrossRefGoogle Scholar
Day, R., Fuller, M., and Schmidt, V.A. Hysteresis properties of titanomagnetites: grain size and composition dependence. Physics of the Earth and Planetary Interiors 13, (1977). 260267.CrossRefGoogle Scholar
Dearing, J.A. Environmental Magnetic Susceptibility using the Bartington MS2 System. (1999). British Library, OM0409 Issue 8 Google Scholar
Dearing, J.A., Dann, R.J.L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A., and O'Grady, K. Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International 124, (1996). 228240.CrossRefGoogle Scholar
deMenocal, P.B. Cultural responses to climate change during the Late Holocene. Science 292, (2001). 667673.CrossRefGoogle ScholarPubMed
Donadini, F., Korhonen, K., Riisager, P., and Pesonen, L. Database for Holocene geomagneitc intensity information. EOS, Transactions, American Geophysical Union 87, 14 (2006). 137 CrossRefGoogle Scholar
Dunlop, D.J. Theory and applications of the day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research 107, B3 (2002). 2056 http://dx.doi.org/10.1029/2001JB000486 Google Scholar
Dunlop, D.J. Theory and applications of the day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments and soils. Journal of Geophysical Research 107, B3 (2002). 2057 http://dx.doi.org/10.1029/2001JB000487 Google Scholar
Gallet, Y., Genevey, A., and Fluteau, F. Does Earth's magnetic field secular variation control centennial climate change?. Earth and Planetary Science Letters 236, (2005). 339347.CrossRefGoogle Scholar
Gallet, Y., Genevey, A., Le Goff, M., Fluteau, F., and Eshraghi, S.A. Possible impact of the Earth's magnetic field on the history of ancient civilizations. Earth and Planetary Science Letters 246, (2006). 1726.CrossRefGoogle Scholar
Gallet, Y., Le Goff, M., Genevey, A., Margueron, J., and Matthiae, P. Geomagnetic field intensity behaviour in the Middle East between 3000 BC and 1500 BC. Geophysical Research Letters 35, (2008). L02307 http://dx.doi.org/10.1029/2007GL031991 Google Scholar
Genevey, A., and Gallet, Y. Intensity of the geomagnetic field in western Europe over the past 2000 years: new data from ancient French pottery. Journal of Geophysical Research 107, B11 (2002). 2285 http://dx.doi.org/10.1029/2001JB000701 CrossRefGoogle Scholar
Genevey, A., Gallet, Y., Constable, C.G., Korte, M., and Hulot, G. ArcheoInt: an upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochemistry, Geophysics, Geosystems 9, (2008). Q04038 http://dx.doi.org/10.1029/2007GC001881 CrossRefGoogle Scholar
Gómez-Paccard, M., Chauvin, A., Lanos, P., Thiriot, J., and Jiménez-Castillo, P. Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain). Physics of the Earth and Planetary Interiors 157, (2006). 1632. http://dx.doi.org/10.1016/j.pepi.2006.03.001 CrossRefGoogle Scholar
González Licon, E., and Fernández Davila, E. La ceramica de Oaxaca. El Formativo. Merino Carrion, B.L., and Garcia Cook, A. La produccion alfarera en el México antiguo I, Coleccion Cientifica, Serie Arqueologia. (2005). Instituto Nacional de Antropologia y de Historia, México. 227284.Google Scholar
Herrera, R.S., Neff, H., and Glascock, M.D. Ceramic patterns, social interaction, and the olmec: neutron activation analysis of early formative pottery in the Oaxaca Highlands of Mexico. Journal of Archaeological Science 26, (1999). 967987.CrossRefGoogle Scholar
Hervé, G., Schnepp, E., Chauvin, A., Lanos, P., and Nowaczyk, N. Archaeomagnetic results on three Early Iron Age salt–kilns from Moyenvic (France). Geophysical Journal International 185, 1 (2011). 144156. http://dx.doi.org/10.1111/j.1365-246X.2011.04933.x CrossRefGoogle Scholar
Korhonen, K., Donadini, F., Riisager, P., and Pesonen, L. GEOMAGIA50: an archeointensity database with PHP and MySQL. Geochemistry, Geophysics, Geosystems 9, (2008). http://dx.doi.org/10.1029/2007GC001893 CrossRefGoogle Scholar
Korte, M., and Constable, C.G. Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochemistry, Geophysics, Geosystems 6, 2 (2005). Q02H16 http://dx.doi.org/10.1029/2004GC000801 Google Scholar
Korte, M., and Constable, C.G. Improving geomagnetic field reconstructions for 0–3 ka. Physics of the Earth and Planetary Interiors 188, (2011). 247259. http://dx.doi.org/10.1016/j.pepi.2011.06.017 CrossRefGoogle Scholar
Korte, M., Donadini, F., and Constable, C.G. Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochemistry, Geophysics, Geosystems 10, (2009). Q06008 http://dx.doi.org/10.1029/2008GC002297 CrossRefGoogle Scholar
Korte, M., Constable, C.G., Donadini, F., and Holme, R. Reconstructing the Holocene geomagnetic field. Earth and Planetary Science Letters 312, (2011). 497505. http://dx.doi.org/10.1016/j.epsl.2011.10.031 CrossRefGoogle Scholar
Levi, S. The effect of magnetite particle size on paleointensity determinations of the geomagnetic field. Physics of the Earth and Planetary Interiors 13, (1977). 245259.CrossRefGoogle Scholar
Marcus, J. Men's and women's ritual in Formative Oaxaca. Grove, D.C., and Joyce, R.A. Social Patterns in Pre-Classic Mesoamerica. (1999). Dumbarton Oaks Research Library and Collection, Washington D.C.. 6796.Google Scholar
Marcus, J., and Flannery, K.V. Zapotec Civilization: How Urban Society Evolved in Mexico's Oaxaca Valley. (1996). Thames and Hudson, London.Google Scholar
Morales, J., Alva-Valdivia, L.M., Goguitchaichvili, A., and Urrutia-Fucugauchi, J. Cooling rate corrected paleointensities from the Xitle lava flow: evaluation of within-site scatter for single spot-reading cooling units. Earth, Planets and Space 58, 10 (2006). 13411347.CrossRefGoogle Scholar
Morales, J., Goguitchaichvili, A., and Urrutia-Fucugauchi, J. Cooling rate effect as a cause of systematic overestimating of the absolute Thellier paleointensities: a cautionary note. Studia Geophysica et Geodaetica 51, (2007). 315326.CrossRefGoogle Scholar
Morales, J., Goguitchaichvili, A., Acosta, G., Gonzalez-Moran, T., Alva-Valdivia, L., Robles-Camacho, J., and Hernandez-Bernal, M. Magnetic properties and archeointensity determination on pre-Columbian pottery from Chiapas, Mesoamerica. Earth, Planets and Space 61, 1 (2009). 8391.CrossRefGoogle Scholar
Nagata, T., Arai, Y., and Momose, K. Secular variation of the geomagnetic total force during the last 5000 years. Journal of Geophysical Research 68, (1963). 52775281.CrossRefGoogle Scholar
Pike, C.R., Roberts, A.P., and Verosub, K.L. Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Geophysics 85, (1999). 66606667.Google Scholar
Pineda Durán, M., (2011). Determinación de la arqueointensidad geomagnética absoluta sobre las cerámicas precolombinas del occidente de México: implicaciones en geomagnetismo y arqueología. Tesis de Doctorado, UNAM, México.Google Scholar
Pineda Duran, M., Goguitchaichvili, A., Morales, J., Aguilar-Reyes, B., Alva-Valdivia, L., Oliveros-Morales, A., Calvo-Rathert, M., Moran, T., and Robles-Camacho, J. Magnetic properties and Archeointensity of Earth's magnetic field recovered from El Opeño, earliest funeral architecture known in Western Mesoamerica. Studia Geophysica et Geodaetica 54, 4 (2010). 575593. http://dx.doi.org/10.1007/s11200-010-0035-5 CrossRefGoogle Scholar
Prévot, M., Mainkinen, R.S., Grommé, S., and Lecaille, A. High paleointensity of the geomagnetic field from thermomagnetic studies on rift valley pillow basalts from the middle Atlantic ridge. Journal of Geophysical Research 88, (1983). 23162326.CrossRefGoogle Scholar
Riisager, P., and Riisager, J. Detecting multidomain magnetic grains in Thellier paleointensity experiments. Physics of the Earth and Planetary Interiors 125, (2001). 111117.CrossRefGoogle Scholar
Roberts, A.P., Pike, C.R., and Verosub, K.L. FORC diagrams: a new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research 105, B12 (2000). 28,46128,475.CrossRefGoogle Scholar
Rodriguez Ceja, M., (2009). Propriedades magnéticas y arqueointensidades de cerámicas teotihuacana. Tesis de Doctorado, UNAM, México.Google Scholar
Rodriguez Ceja, M., Goguitchaichvili, A., Morales, J., Ostrooumov, M., Manzanilla, L.R., Aguilar Reyes, B., and Urrutia-Fucugauchi, J. Integrated archaeomagnetic and micro-Raman spectroscopy study of pre-Columbian ceramics from the Mesoamerican formative village of Cuanalan, Teotihuacan Valley, Mexico. Journal of Geophysical Research 114, (2009). B04103 http://dx.doi.org/10.1029/2008JB006106 CrossRefGoogle Scholar
Rosenmeier, M.F., Hodell, D.A., Brenner, M., and Curtis, J.H. A 4000-Year lacustrine record of environmental change in the Southern Maya Lowlands, Petén, Guatemala. Quaternary Research 57, (2002). 183190.CrossRefGoogle Scholar
Schnepp, E., and Lanos, P. Archaeomagnetic secular variation in Germany during the past 2500 years. Geophysical Journal International 163, (2005). 479490. http://dx.doi.org/10.1111/j.1365-246X.2005.02734.x CrossRefGoogle Scholar
Selkin, P.A., and Tauxe, L. Long-term variations in paleointensity. Philosophical Transactions of the Royal Society of London, Series A 358, (2000). 10651088.CrossRefGoogle Scholar
Tauxe, L., Mullender, T.A.T., and Pick, T. Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. Journal of Geophysical Research 101, B1 (1996). 571583.CrossRefGoogle Scholar
Tauxe, L., Butler, R.F., Van der Voo, R., and Banerjee, S.K. Essentials of Paleomagnetism. (2010). University of California Press, CrossRefGoogle Scholar
Thellier, E., and Thellier, O. Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Geophysique 15, (1959). 285376.Google Scholar
Supplementary material: PDF

Pétronille et al. Supplementary Material

Supplementary Material

Download Pétronille et al. Supplementary Material(PDF)
PDF 818.7 KB