Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T09:46:37.684Z Has data issue: false hasContentIssue false

Chronostratigraphy of uplifted Quaternary hemipelagic deposits from the Dodecanese island of Rhodes (Greece)

Published online by Cambridge University Press:  20 January 2017

Frédéric Quillévéré*
Affiliation:
Univ Lyon, Université Lyon 1, ENS de Lyon, CNRS UMR 5276 LGL-TPE, F-69622 Villeurbanne, France
Jean-Jacques Cornée
Affiliation:
UMR5243 CNRS, Geosciences Montpellier, Université Montpellier 2, 34095 Montpellier Cedex 05, France
Pierre Moissette
Affiliation:
Univ Lyon, Université Lyon 1, ENS de Lyon, CNRS UMR 5276 LGL-TPE, F-69622 Villeurbanne, France Department of Historical Geology-Paleontology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
Gatsby Emperatriz Lopez-Otalvaro
Affiliation:
Univ Lyon, Université Lyon 1, ENS de Lyon, CNRS UMR 5276 LGL-TPE, F-69622 Villeurbanne, France UMR5243 CNRS, Geosciences Montpellier, Université Montpellier 2, 34095 Montpellier Cedex 05, France
Christiaan van Baak
Affiliation:
Paleomagnetic Laboratory “Fort Hoofddijk”, Utrecht University, Budapestlaan 17, 3584 CD, Utrecht, The Netherlands
Philippe Münch
Affiliation:
UMR5243 CNRS, Geosciences Montpellier, Université Montpellier 2, 34095 Montpellier Cedex 05, France
Mihaela Carmen Melinte-Dobrinescu
Affiliation:
National Institut of Marine Geology and Geoecology, 23-25 Dimitrie Onciul Street, PO Box 34-51, 70318 Bucharest, Romania
Wout Krijgsman
Affiliation:
Paleomagnetic Laboratory “Fort Hoofddijk”, Utrecht University, Budapestlaan 17, 3584 CD, Utrecht, The Netherlands
*
* Laboratoire de Geologie de Lyon, Universite Lyon 1, 69622 Villeurbanne, France. frederic.quillevere@univ-lyon1.fr (F. Quillevere)

Abstract

An integrated magneto-biostratigraphic study, based on calcareous nannofossils and foraminifers, together with the radiometric dating of a volcaniclastic layer found in several outcrops, was carried out on the hemipelagic deposits of the Lindos Bay Formation (LBF) at six localities on the island of Rhodes (Greece). Our highly refined chronostratigraphic framework indicates that the lower and upper lithos-tratigraphic boundaries of the LBF are diachronous. Associated with the 40Ar/39Ar age determination of 1.85 ± 0.08 Ma for the volcaniclastic layer, our data show that among the investigated outcrops, the Lindos Bay type locality section provides the longest record (1.1 Ma) of the LBF. Hemipelagic deposition occurred continuously from the late Gelasian (~1.9 Ma) to the late Calabrian (~0.8 Ma), i.e., from Chrons C2n (Olduvai) to C1r.1r (Matuyama) and from nannofossil Zones CNPL7 to CNPL10. This long record, together with the hemipelagic nature of the deposits, make the Lindos Bay type locality section a unique element in the eastern Mediterranean region, allowing future comparisons with other early Quaternary deep-sea sections available in the central and western Mediterranean regions.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, S.R., 2001. Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. Journal of Volcanology and Geothermal Research 105, 141162.Google Scholar
André, A., Weiner, A., Quillévéré, F., Aurahs, R., Morard, R., Douady, C.J., de Garidel-Thoron, T., Escarguel, G., de Vargas, C., Kucera, M., 2013. The cryptic and the apparent reversed: lack of genetic differentiation within the morphologically diverse plexus of the planktonic foraminifer Globigerinoides sacculifer. Paleobiology 39 (1), 2139.Google Scholar
Barrier, E., Müller, C., Angelier, J., 1979. Sur l’importance du Quaternaire ancien marin dans l’île de Karpathos (arc hellénique, Grèce) et ses implications tectoniques. Comptes-rendus de la Société Géologique de France 4, 198201.Google Scholar
Backman, J., Raffi, I., Rio, D., Fornaciari, E., Pälike, H., 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy 45, 221224.Google Scholar
Beckman, L.J., 1995. Stratigraphical and Sedimentological Investigations of Pliocene/ Pleistocene Deposits at Lindos Bay, Rhodes. Unpublished Ph. D. thesis. University of Tromsø.Google Scholar
Bellon, H., Jarrige, J.J., Sorel, D., 1979. Les activités magmatiques égéennes de l’Oligocène à nos jours et leurs caractères géodynamiques. Données nouvelles. Revue de Géographie Physique et de Géologie Dynamique 21, 4155.Google Scholar
Benda, L., Meulenkamp, J.E., van de Weerd, A., 1977. Biostratigraphic correlations in the eastern Mediterranean Neogene: 3. Correlation between mammal, sporomorph and marine microfossil assemblages from the Upper Cenozoic of Rhodos, Greece. Newsletters on Stratigraphy 6, 117130.Google Scholar
Bollmann, J., 1997. Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments. Marine Micopaleontology 29, 319350.Google Scholar
Bromley, R.G., Hanken, N.-M., 2003. Structure and function of large, lobed Zoophycos, Pliocene of Rhodes, Greece. Palaeogeography, Palaeoclimatology, Palaecoecology 192, 79100.Google Scholar
Cas, R.A.F., Wright, J.V., 1988. Volcanic Successions, Modern and Ancient. Unwin Hyman Ltd, p. 487.Google Scholar
Cita, M.B., Gibbard, P.L., Head, M.J., The ICS Subcommission on Quaternary Stratigraphy, 2012. Formal ratification of the GSSP for the base of the calabrian stage (second stage of the Pleistocene series, Quaternary system). Episodes 35 (3), 388397.Google Scholar
Cornée, J.-J., Moissette, P., Joannin, S., Suc, J.-P., Quillévéré, F., Krijgsman, W., Hilgen, F., Koskeridou, E., Münch, P., Lécuyer, C., Desvignes, P., 2006a. Tectonic and climatic controls on coastal sedimentation: the Late Pliocene-Middle Pleistocene of northeastern Rhodes, Greece. Sedimentary Geology 187, 159181.Google Scholar
Corneé, J.-J., Münch, P., Quillévéré, F., Moissette, P., Vasiliev, I., Krijgsman, W., Verati, C., Lécuyer, C., 2006b. Timing of Late Pliocene to Middle Pleistocene tectonic events in Rhodes (Greece) inferred from magneto-biostratigraphy and 40Ar/39Ar dating of a volcaniclastic layer. Earth and Planetary Science Letters 250, 281291.Google Scholar
DiPaola, G.M., 1974. Volcanology and petrology of Nisyros Island Dodecanese, Greece. Bulletin of Volcanology 38, 944987.Google Scholar
Drinia, H., Koskeridou, E., Antonarakou, A., Tzortzaki, E., 2010. Benthic foraminifera associated with the zooxanthellate coral Cladocora in the Pleistocene of the Kos island (Aegean Sea, Greece): sea level changes and palaeoenvironnemental conditions. Bulletin of the Geological Society of Greece 43 (2), 613619.Google Scholar
Duermeijer, C.E., Nyst, M., Meijer, P.T., Langereis, C.G., Spakman, W., 2000. Neogene evolution of the Aegean Arc; paleomagnetic and geodetic evidence for a rapid and young rotation phase. Earth and Planetary Science Letters 176, 509525.Google Scholar
Fisher, R.A., 1953. Dispersion on a sphere. In: Proceedings of the Royal Society of London, Series A, 217, pp. 295305.Google Scholar
Flemming, N.C., Woodworth, P.L., 1988. Monthly mean sea levels in Greece during 1969–1983 compared to relative vertical movements measured over different timescales. Tectonophysics 148, 5972.Google Scholar
Flores, J.-A., Gersonde, R., Sierro, F.J., Niebler, H.-S., 2000. Southern ocean Pleistocene calcareous nannofossil events: calibration with the isotope and geomagnetic stratigraphies. Marine Micropaleontology 40 (4), 377402.Google Scholar
Frydas, D., 1994. Die Pliozän/Pleistozän-Grenze auf der Insel Rhodos (Griechland). Müntersche Forschungen zur Geologie und Paläontologie 76, 331344.Google Scholar
Gibbard, P.L., Head, M.J., Walker, M.J.C., Subcommission on Quaternay Stratigraphy, 2010. Formal ratification of the Quaternary system/period and redefinition of the Pleistocene series/epoch with a base at 2.58 Ma. Journal of Quaternary Science 25, 96102.Google Scholar
Hanken, N.-M., Bromley, R.G., Miller, J., 1996. Plio-Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece. Geological Journal 21, 271296.Google Scholar
Hansen, K.S., 1999. Development of a prograding carbonate wedge during sea level fall: lower Pleistocene of Rhodes, Greece. Sedimentology 46, 559576.Google Scholar
Hilgen, R.A., 1991. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale. Earth and Planetary Science Letters 104, 226244.Google Scholar
Hilgen, F.J., Lourens, L.J., Van Dam, J.A., 2012. The Neogene period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), The Geological Time Scale 2012. Elsevier BV, Amsterdam, pp. 923978.Google Scholar
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., Brun, J.-P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monié, P., Gueydan, F., Okay, A.l., Oberhänsli, R., Pourteau, A., Augier, R., Gadenne, L., Driussi, O., 2013. Aegean tectonics: train localisation, slab tearing and trench retreat. Tectonophysics 597598, 133.Google Scholar
Kawagata, S., Hayward, B.W., Grenfell, H.R., Sabaa, A., 2005. Mid-Pleistocene extinction of deep-sea foraminifera in the North Atlantic Gateway (ODP sites 980 and 982). Palaeogeography, Palaeoclimatology, Palaeoecology 221, 267291.Google Scholar
Kennett, J.P., Srinivasan, M.S. (Eds.), 1983. Neogene Planktonic Foraminifera, a Phylogenetic Atlas. Hutchinson Ross Publishing Company, Stroudsburd, Pennsylvania, p. 265.Google Scholar
Keraudren, B., 1970. Les formations quaternaires marines de la Grèce. Bulletin du Musée d’Anthropologie préhistorique de Monaco 6, 5153.Google Scholar
Koppers, A.A.P., 2002. ArARCALC-software for 40Ar/39Ar age calculations. Computers & Geosciences 28, 605619.Google Scholar
Kovacs, E., Spjeldnaes, N., 1999. Pliocene-Pleistocene stratigraphy of Rhodes, Greece. Newsletters on Stratigraphy 37, 191208.Google Scholar
Lécuyer, C., Daux, V., Moissette, P., Cornée, J.-J., Quillévéré, F., Koskeridou, E., Fourel, F., Martineau, F., Reynard, B., 2012. Stable carbon and oxygen isotope compositions of invertebrate carbonate shells and the reconstruction of paleotemperatures and paleosalinities - a case study of the early Pleistocene of Rhodes, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 350352, 3948.Google Scholar
Lekkas, E., Danamos, G., Skourtsos, E., Sakellariou, D., 2001. Position of the Middle Triassic Tyros beds in the Gavrovo-Tripolis unit (Rhodes island, Dodecanese, Greece). Geologica Carpathica 53, 3744.Google Scholar
Lourens, L.J., Hilgen, F.J., Laskar, J., Shackleton, N.J., Wilson, D., 2005. The Neogene period. In: Gradstein, F.M., Ogg, J.G., Smith, A.G. (Eds.), A Geological Time Scale 2004. Cambridge University Press, pp. 409440.Google Scholar
Lourens, L.J., Hilgen, F.J., Raffi, I., 1998. Base of large Gephyrocapsa and astronomical calibration of early Pleistocene sapropels in Site 967 and Hole 969D: solving the chronology of the Vrica section (Calabria, Italy). In: Robertson, H.F., Emeis, K., Richter, C., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 160, pp. 191198 (College Station, TX).Google Scholar
Lourens, L.J., Hilgen, F.J., Raffi, I., Vergnaud-Grazzini, C., 1996. Early Pleistocene chronology of the Vrica section (Calabria, Italy). Paleoceanography 11 (6), 797812.Google Scholar
Løvlie, R., Støle, G., Spjeldnaes, N., 1989. Magnetic polarity stratigraphy of Pliocene-Pleistocene marine sediments from Rhodos, eastern Mediterranean. Physics of the Earth and Planetary Interiors 54, 340352.Google Scholar
Massari, F., Rio, D., Sgavetti, M., D’Alessandro, A., Asioli, A., Capraro, L., Fornaciari, E., Tateo, F., 2002. Interplay between tectonics and glacio-eustasy: Pleistocene succession of the Crotone basin, Calabria (southern Italy). Geological Society of America Bulletin 114, 11831209.Google Scholar
Matsuoka, H., Okada, H., 1990. Time-progressive morphometric changes of the genus Gephyrocapsa in the Quaternary sequence of the tropical Indian Ocean, site 709. In: Duncan, R.A., Backman, J., Peterson, L.C., et al. (Eds.), Proceedings ODP, Scientific Results, 115. Ocean Drilling Program, College Station, TX, pp. 255270.Google Scholar
McFadden, P.L., McElhinny, M.W., 1990. Classification of the reversal test in palaeomagnetism. Geophysical Journal International 103, 725729.Google Scholar
Meulenkamp, J.E., de Mulder, E.F.J., Van der Weerd, A., 1972. Sedimentory history and paleogeography of the Late Cenozoic of the Island of Rhodos. Zeitschrift der Deutschen Geologischen Gesellschaft 123, 541553.Google Scholar
Moissette, P., Spjeldnaes, N., 1995. Plio-Pleistocene deep-water bryozoans from Rhodes, Greece. Palaeontology 38, 771799.Google Scholar
Moissette, P., Koskeridou, E., Drinia, H., Cornée, J.-J., 2016. Facies associations in warm-temperate siliciclastic deposits: insights from early Pleistocene eastern Mediterranean (Rhodes, Greece). Geological Magazine 153, 6183.Google Scholar
Mutti, E., Orombelli, G., Pozzi, R., 1970. Geological studies on the Dodecanese Islands (Aegean Sea). IX. Geological map of the island of Rhodes (Greece); explanatory notes. Annales Géologiques des Pays Helléniques 22, 79226.Google Scholar
Narcisi, B., Vezzoli, L., 1999. Quaternary stratigraphy of distal tephra layers in the Mediterranean-an overview. Global and Platenary Change 21, 3150.Google Scholar
Nelson, C.S., Freiwald, A., Titschack, J., List, S., 2001. Lithostratigraphy and Sequence Architecture of Temperate Mixed Siliciclastic-carbonate Facies in a New Plio-Pleistocene Section at Plimiri, Rhodes Island (Greece), vol. 25. Department of Earth Sciences, University of Waikato, pp. 150. Occasional Reports.Google Scholar
Nielsen, J.K., Hanken, N.-M., Nielsen, J.K., Hasen, K.S., 2006. Biostratigraphy and palaeoecology of the marine Pleistocene of Rhodes, Greece: Scleractinia, Serpulidae, Mollusca and Brachiopoda. Bulletin of Geoscience 81, 173196.Google Scholar
Orombelli, G., Montanari, C., 1967. Geological studies on the Dodecanese Islands (Aegean Sea): VI. The calabrian of the island of Rhodes (Greece), preliminary information. Bolletino della Societá Geologica Italiana 86 (2), 103113.Google Scholar
Papanikolaou, M.D., Triantaphyllou, M.V., Platzman, E.S., Gibbard, P.L., Mac Niocaill, C., Head, M.J., 2011. A well-established early-middle Pleistocene marine sequence on south-east Zakynthos island, western Greece: magneto-biostratigraphic constraints and paleoclimatic implications. Journal of Quaternary Science 26 (5), 523540.Google Scholar
Pirazzoli, P.A., Montaggioni, L.F., Saliege, J.F., Segonzac, G., Thommeret, Y., Vergnaud-Grazzini, C., 1989. Crustal block movements from Holocene shorelines: Rhodes Island (Greece). Tectonophysics 170, 89114.Google Scholar
Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews 25, 31133137.Google Scholar
Raffi, I., Backman, J., Rio, D., Shackleton, N.J., 1993. PlioePleistocene nannofossil biostratigraphy and calibration to oxygen isotopes stratigraphies from deep sea drilling project site 607 and ocean drilling program site 677. Paleoceanography 3, 387408.Google Scholar
Rasmussen, T.L., Hastrup, A., Thomsen, E., 2005. Lagoon to deep-water foraminifera and ostracods from the Plio-Pleistocene Kallithea Bay section, Rhodes, Greece. In: Thomsen, E. (Ed.), Cushman Foundation for Foraminiferal Research, pp. 1290. Special Publication 39.Google Scholar
Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T.L., DePaolo, J., 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology 145, 117152.Google Scholar
Rio, D., 1982. The fossil distribution of Coccolithophore genus Gephyrocapsa Kamptner and related Plio-Pleistocene chronostratigraphic problems. In: Prell, W.L., Gardner, J.V., et al. (Eds.), Initial Reports DSDP, 68. US Govt. Printing Office, Washington, pp. 325343.Google Scholar
Rio, D., Raffi, I., Villa, G., 1990. PlioceneePleistocene calcareous nannofossil distribution patterns in the western Mediterranean. In: Kastens, K.A., Mascle, J., et al. (Eds.), Proceedings of the ODP, Scientific Results, 107. Ocean Drilling Program, College Station, TX, pp. 513533.Google Scholar
Samtleben, C., 1980. Die evolution der Coccolithophoriden-Gattung Gephyrocapsa nach Befunden im Atlantic. Paläontologische Zeitschrift 54, 91125.Google Scholar
Sissingh, W., 1972. Late Cenozoic Ostracoda of the south Aegan Island Arc. Utrecht Micropaleontological Bulletins 6, 1187.Google Scholar
Steinthorsdottir, M., Lidgard, S., Hakansson, E., 2006. Reconstructing palaeoenvironments in a Pliocene-Pleistocene Mediterranean microbasin. Facies 52, 361380.Google Scholar
Ten Veen, J.H., Kleinspehn, K.L., 2002. Geodynamics along an increasingly curved convergent plate margin: Late Miocene-Pleistocene Rhodes, Greece. Tectonics 21, 121.Google Scholar
Ten Veen, J.H., Boulton, S.J., Alçiçek, M.C., 2009. From palaeotectonics to neotectonics in the Neotethys realm: the importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey). Tectonophysics 473, 261281.Google Scholar
Titschack, J., Joseph, N., Fietzke, J., Freiwald, A., Bromley, R.G., 2013. Record of a tectonically-controlled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sedimentary Geology 283, 1533.Google Scholar
Titschack, J., Nelson, C.S., Beck, T., Freiwald, A., Radtke, U., 2008. Sedimentary evolution of a late Pleistocene temperate red algal reef (Coralligène) on Rhodes, Greece: correlation with global sea-level fluctuations. Sedimentology 55, 17471776.Google Scholar
Titschack, J., Freiwald, A., 2005. Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In: Freiwald, A., Roberts, J.M. (Eds.), Cold-water Corals and Ecosystems. Springer-Verlag Berlin Heidelberg, pp. 4159.Google Scholar
Thomsen, E., Rasmussen, T.L., Harstrup, A., 2001. Calcareous nannofossil, ostracode and foraminifera biostratigraphy of Plio-Pleistocene deposits, Rhodes (Greece), with a correlation to the Vrica section (Italy). Journal of Micropaleontology 20, 143154.Google Scholar
Tortorici, L., Caputo, R., Monaco, C., 2010. Late Neogene to Quaternary contractional structures in Crete (Greece). Tectonophysics 483, 203213.Google Scholar
van Hinsbergen, D.J.J., Krijgsman, W., Langereis, W., Cornée, J.-J., Duermeijer, C.E., Van Vugt, N., 2007. Discrete Plio-Pleistocene phases of tilting and counterclockwise rotation in the southeastern Aegean arc (Rhodes, Greece): early Pliocene formation of the south Aegean left-lateral strike-slip system. Journal of the Geological Society of London 164, 11331144.Google Scholar
van Hoof, A.A.M., Langereis, C.G., 1991. Reversal records in marine marls and delayed acquisition of remanent magnetization. Nature 351, 223224.Google Scholar
Vasiliev, I., Franke, C., Meeldijk, J.D., Dekkers, M.J., Langereis, C.G., Krijgsman, W., 2008. Putative greigite magnetofossils from the Pliocene epoch. Nature Geoscience 1 (11), 782786.Google Scholar
Weinholz, P., Lutze, G.F., 1989. The Stilostomella extinction. In: Baldauf, J., Heath, G.G., Ruddiman, W.F., Sarnthein, M. (Eds.), Proceedings of the ODP, Scientific Results, vol. 108. Ocean Drilling Program, College Station, TX, pp. 113117.Google Scholar