Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T07:41:48.730Z Has data issue: false hasContentIssue false

Criteria of Climatic Change in the Inorganic Components of Marine Sediments1

Published online by Cambridge University Press:  20 January 2017

Dean A. McManus*
Affiliation:
Department of Oceanography, University of Washington, Seattle, Washington 98105

Abstract

The most commonly used criteria in marine sediments for detecting climatic changes are the remains of organisms and the position of the shorelines, for these two types of criteria can have a relatively quick response to climatic change. The inorganic components of marine sediments, however, also provide useful criteria. On the inner continental shelf where the best correlation should be found between modern terrigenous marine sediments and modern climates, sediment texture is the main criterion. Where land ice reaches the sea, gravel may be deposited, but much of the inner shelf in polar climates receives abundant mud, containing a small amount of clay minerals. From tropical humid climates abundant mud is delivered composed mainly of clay minerals, but knowledge of their composition is required, because the largest rivers do not have a dominance of tropical sediment products. In arid climates and midlatitude moderate rainfall climates, inner shelf sand is indicative, although it also possibly reflects the common entrapment of mud in estuaries and the presence of the middle latitude cyclone belt in which storms remove the fine material present on the inner shelf. Climate also controls extensive carbonate deposits. In deep-sea sediments composition contains more important criteria than texture. Some criteria appear to be reliable for various aspects of modern climates and therefore should be useful in detecting climatic changes. These criteria include the size, surface texture, and mineralogical and chemical composition of eolian transported material downwind of arid lands; global dust in latitudinal bands of atmospheric circulation; volcanic ash downwind of geologically instantaneous events; surface texture of quartz grains and the abundance of terrigenous material in pelagic sediments as indication of glaciation; chlorite from a polar climate; kaolinite from a tropical climate, and inorganically precipitated calcium carbonate in enclosed seas. Less definitive criteria are possibly the rate of turbidity current activity, iron-rich layers in the sediment, sedimentation from the nepheloid zone, construction of features by bottom currents, organic matter content, and sedimentation rate. Speculations include the intensity of benthic faunal reworking of sediment. Using these criteria it is possible to identify the sediment products of the extreme climates: polar, tropical rainy, and dry (desert), and thereby to infer the existence of these climates. The moderate climates apparently are not so easily detected. The criteria also indicate the nature of the water, wind, and ice processes delivering the sediment products to the sea. Extreme values in the frequency or magnitude of the climate-associated processes have great significance in the supplying of terrigenous material, and changes in these extreme values could produce salient changes in the sedimentary sequence. The criteria of climatic change might well be considered criteria of change in extreme values of the processes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

University of Washington, Department of Oceanography, Contribution No. 544.

References

Arrhenius, G. (1952). Sediment cores from the east Pacific, Reports, Swedish Deep-Sea Expedition, 1947–1948, 5, 189.Google Scholar
Arrhenius, G. (1959). Sedimentation on the ocean floor. In “Researches in Geochemistry” (Abelson, P.H., Ed.), Vol. 1, pp. 124 Wiley, New York.Google Scholar
Arrhenius, G. (1963). Pelagic sediments.. In “The Sea” (Hill, M. N. Ed.), Vol. 3, pp. 655727. Interscience, New York.Google Scholar
Bailey, H. P. (1958). Coastal climates of the world, map: scale 1 :50,000,000.. Office of Naval Research and University of California, Berkeley, California.Google Scholar
Berry, R. W., and Johns, W. D. (1966). Mineralogy of the clay-sized fractions of some North Atlantic-Arctic ocean bottom sediments.. Geological Society of America, Bulletin, 77 183196.CrossRefGoogle Scholar
Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans.. Geological Society of America, Bulletin 76, 803832.CrossRefGoogle Scholar
Bonatti, E., and Arrhenius, G. (1965). Eolian sedimentation in the Pacific off northern Mexico.. Marine Geology 3, 337348.CrossRefGoogle Scholar
Broecker, W. S., Turekian, K. K., and Heezen, B. C. (1958). The relation of deep sea sedimentation rates to variations in climate.. American Journal of Science 256, 503517.CrossRefGoogle Scholar
Clarke, R. H. (1968). Burrow frequency in abyssal sediments.. Deep-Sea Research 15, 397400.Google Scholar
Conolly, J. R., and Ewing, M. (1965a). Pleistocene glacial-marine zones in North Atlantic deep-sea sediments.. Nature 208, 135138.CrossRefGoogle Scholar
Conolly, J. R., and Ewing, M. (1965b). Ice-rafted detritus as a climatic indicator in Antarctic deep-sea cores.. Science 150, 18221824.CrossRefGoogle ScholarPubMed
Creager, J. S., and McManus, D. A. (1966). Geology of the southeastern Chukchi Sea.. In “Environment of the Cape Thompson Region, Alaska.” (Wilimovsky, N.J., Ed.), pp. 755786. U.S. Atomic Energy Commisson, Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia,Google Scholar
Dal Cin, R. (1968). Climatic significance of roundness and percentage of quartz in conglomerates.. Journal of Sedimentary Petrology 38, 10941099.Google Scholar
Damuth, J. E., and Fairbridge, R. W. (1970). Equatorial Atlantic deep-sea arkosic sands and ice-age aridity in tropical South America.. Geological Society of America Bulletin 81 189206.CrossRefGoogle Scholar
Duncan, J. R. Jr. (1968). Late Pleistocene and Postglacial Sedimentation and Stratigraphy of Deep-Sea Environments off Oregon.. Unpublished Ph.D. Thesis, Oregon State University, Corvallis, Oregon.Google Scholar
Eaton, G. P. (1963). Volcanic ash deposits as a guide to atmospheric circulation in the geologic past.. Journal of Geophysical Research 68, 521528.CrossRefGoogle Scholar
Emery, K. O. (1968). Relict sediments on continental shelves of the world.. American Association of Petroleum Geologists, Bulletin 52. 445464.Google Scholar
Ericson, D. B., Ewing, M., Wollin, G., and Heezen, B. C. (1961). Atlantic deep-sea sediment cores.. Geological Society of America, Bulletin 72, 193286.CrossRefGoogle Scholar
Ewing, M., Ericson, D. B., and Heezen, B. C. (1958). Sediments and topography of the Gulf of Mexico.. In “Habitat of Oil: A Symposium.” (Weeks, L., Ed.), pp. 9951053. American Association of Petroleum Geologists, Tulsa, Oklahoma.Google Scholar
Ewing, M., and Thorndike, E. M. (1965). Suspended matter in deep ocean water.. Science 147, 12911294.CrossRefGoogle ScholarPubMed
Ferguson, W. S., Griffin, J. J., and Goldberg, E. D. (1970). Atmospheric dusts from the North Pacific—a short note on long-range eolian transport.. Journal of Geophysical Research 75, 11371139.CrossRefGoogle Scholar
Folger, D. W., Burckle, L. H., and Heezen, B. C. (1967). Opal phytoliths in a North Atlantic dust fall.. Science 155, 12431244.CrossRefGoogle Scholar
Fowler, G. A. Kulm, L. D., Duncan, J. R., and Griggs, G. B. (1969). Late Quaternary deep-sea stratigraphy and paleoclimatology of a middle to high latitude region, northeastern Pacific (discussion paper).. Geological Society of America, Abstracts with Programs for 1969, Pt. 7, 275277.Google Scholar
Fox, P. J., Heezen, B. C. and Harian, A. M. (1968). Abyssal anti-dunes.. Nature 220, 470472.CrossRefGoogle Scholar
Gibbs, R. J. (1967a). Amazon River: environmental factors that control its dissolved and suspended load.. Science 156, 17341737.CrossRefGoogle ScholarPubMed
Gibbs, R. J. (1967b). The geochemistry of the Amazon River system: Part I. the factors that control the salinity and the composition and concentration of the suspended solids.. Geological Society of America, Bulletin 78, 12031232.CrossRefGoogle Scholar
Ginsburg, R. N., Lloyd, R. M., Stockman, K. W., McCallum, J. S. (1963). Shallow-water carbonate sediments.. In “The Sea.” (Hill, M. N., Ed.), Vol. 3, pp. 554582. Interscience, New York.Google Scholar
Gretener, P. E. (1967). Significance of the rare event in geology.. American Association of Petroleum Geologists, Bulletin 51, 21972206.Google Scholar
Griffin, J. J., and Goldberg, E. D. (1963). Claymineral distribution in the Pacific Ocean.. In “The Sea” (Hill, M.N., Ed.), Vol. 3, pp. 728741. Interscience, New York.Google Scholar
Griffin, J. J., Windom, H., and Goldberg, E. D. (1968). The distribution of clay minerals in the world ocean.. Deep-Sea Research 15, 433459.Google Scholar
Griggs, G. B., Carey, A. G., Jr., and Kulm, L. D. (1969). Deep-sea sedimentation and sediment-fauna interaction in Cascadia Channel and Cascadia Abyssal Plain.. Deep-Sea Research 16, 157170.Google Scholar
Gross, M. G., McManus, D. A., and Ling, H-Y. (1967). Continental shelf sediment, north-western United States.. Journal of Sedimentary Petrology 37, 790795.Google Scholar
Hansen, D. V., and Rattray, M. Jr. (1965). Gravitational circulation in straits and estuaries.. Journal of Marine Research 23, 104122.Google Scholar
Hayes, M. O. (1967). Relationship between coastal climate and bottom sediment type on the inner continental shelf.. Marine Geology 5, 111132.CrossRefGoogle Scholar
Heezen, B. C., Ewing, M., and Menzies, R. J. (1955). The influence of submarine turbidity currents on abyssal productivity.. Oikos 6, 170182.CrossRefGoogle Scholar
Heezen, B. C., and Hollister, C. (1964). Turbidity currents and glaciation.. In “Problems in Palaeoclimatology.” (Nairn, A. E. M., Ed.), pp. 99109. Interscience, London.Google Scholar
Heezen, B. C., Hollister, C. D., and Ruddiman, W. F. (1966). Shaping of the continental rise by deep geostrophic contour currents.. Science 152, 502508.CrossRefGoogle ScholarPubMed
Heezen, B. C., Menzies, R. J., Schneider, E. D., Ewing, M., and Granelli, N. C. L. (1964). Congo submarine canyon.. American Association of Petroleum Geologists, Bulletin 48, 11261149.Google Scholar
Holeman, J. N. (1968). The sediment yield of major rivers of the world.. Water Resources Research 4, 737747.CrossRefGoogle Scholar
Holmes, M. L., and Creager, J. S. (1967). Holocene history of the Laptev Sea continental shelf, U.S.S.R. (abs.).. Geological Society of America, Special Paper No. 115. pp. 101.Google Scholar
Hülsemann, J., and Emery, K. O. (1961). Stratification in recent sediments of Santa Barbara Basin as controlled by organisms and water character.. Journal of Geology, 69, 279290.CrossRefGoogle Scholar
Judson, S., and Ritter, D. F. (1964). Rates of regional denudation in the United States.. Journal of Geophysical Research 69, 33953401.CrossRefGoogle Scholar
Krinsley, D. H., and Donahue, J. (1968). Environmental interpretation of sand grain surface textures by electron microscopy.. Geological Society of America, Bulletin 78, 743748.CrossRefGoogle Scholar
Krinsley, D. H., and Margolis, S. (1969). A study of quartz sand grain surface textures with the scanning electron microscope. New York Academy of Sciences, Transactions, Series II 31, 457477.CrossRefGoogle Scholar
Krinsley, D. H., and Newman, W. (1965). Pleistocene glaciation: A criterion for recognition of its onset. Science 149, 442443.CrossRefGoogle ScholarPubMed
Krinsley, D. H., and Takahashi, T. (1962). The surface textures of quartz grains, an application of electron microscopy: Glaciation. Science 138 12621264.CrossRefGoogle ScholarPubMed
Lisitsyn, A. P. (1966). “Recent sedimentation in the Bering Sea.” Akad. Nauk. U.S.S.R., Moscow. (English translation, Israel Program for Scientific Translations, 1969).Google Scholar
Livingstone, D. A. (1963). Chemical composition of rivers and lakes.. U.S. Geological Survey, Professional Paper No. 440-G. pp. 64.Google Scholar
Matthews, R. K. (1966). Genesis of recent lime mud in southern British Honduras.. Journal of Sedimentary Petrology 36, 428454.CrossRefGoogle Scholar
Meade, R. H. (1969a). Landward transport of bottom sediments in estuaries of the Atlantic Coastal Plain.. Journal of Sedimentary Petrology 39, 222234.Google Scholar
Meade, R. H. (1969b). Errors in using modern stream-load data to estimate natural rates of denudation. Geological Society of America, Bulletin 80, 12651274.CrossRefGoogle Scholar
Menard, H. W. (1953). Pleistocene and Recent sediment from the floor of the Northeastern Pacific Ocean.. Geological Society of America, Bulletin 64, 12791294.CrossRefGoogle Scholar
McDonald, W. F. (1938). “Atlas of Climatic Charts of the Oceans.” Department of Agriculture, Weather Bureau, Washington, D. C. Google Scholar
McManus, D. A., Kelley, J. C., and Creager, J. S. (1969). Continental shelf sedimentation in an Arctic environment.. Geological Society of America, Bulletin 80, 19611984.CrossRefGoogle Scholar
Milliman, J. D., Ross, D. A., and Ku, T-L. (1969). Precipitation and lithification of deep-sea carbonates in the Red Sea.. Journal of Sedimentary Petrology 39, 724736.Google Scholar
Moore, D. G., and Scruton, P. C. (1957). Minor internal structures of some Recent unconsolidated sediments. American Association of Petroleum Geologists, Bulletin 41, 27232751.Google Scholar
Moore, G. (1966). Arctic beach sedimentation.. In “Environment of the Cape Thompson Region, Alaska” (Wilimovksy, N.J., Ed.), pp. 587608. U.S. Atomic Energy Commission, Clearing-house for Federal Scientific and Technical Information, Springfield, Virginia.Google Scholar
Naugler, F. P. (1967). Recent Sediments of the East Siberian Sea.. Unpublished M.S. Thesis, University of Washington, Seattle, Washington.Google Scholar
Nayudu, Y. R. (1964a). Carbonate deposits and paleoclimatic implications in the northeast Pacific Ocean. Science 146, 515517.CrossRefGoogle ScholarPubMed
Nayudu, Y. R. (1964b). Volcanic ash deposits in the Gult of Alaska and problems of correlation of deep-sea ash deposits.. Marine Geology 1, 194212.CrossRefGoogle Scholar
Nelson, C. H., Kulm, L. D., Carlson, P. R., and Duncan, J. R. (1968). Mazama ash in the Northeastern Pacific.. Science 161, 4749.CrossRefGoogle ScholarPubMed
Odell, N. E. (1952). Antarctic glaciers and glaciology.. In “The Antarctic Today.” (Simpson, F.A., Ed.), pp. 2555.New Zealand Antarctic Society, Wellington, New Zealand.Google Scholar
Olausson, E. (1961). Studies of deep-sea cores. Reports. Swedish Deep-Sea Expedition, Goteberg 8, 337391.Google Scholar
Olausson, E. (1967). Climatological, geoeconomical, and paleooceanographical aspects of carbonate deposition.. In “Progress in Oceanography.” (Sears, M., Ed.), Vol. 4, pp. 245265. Pergamon, New York.CrossRefGoogle Scholar
Peltier, L. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology.. Association of American Geographers Annals 40, 214236.CrossRefGoogle Scholar
Pevear, D. R., and Pilkey, O. H. (1966). Phosphorite in Georgia continental shelf sediments.. Geological Society of America, Bulletin 77, 849858.CrossRefGoogle Scholar
Pilkey, O. H., Schnitker, D., and Pevear, D. R. (1966). Oolites on the Georgia continental shelf edge.. Journal of Sedimentary Petrology 36, 462467.Google Scholar
Piper, D. J. W., and Marshall, N. F. (1969). Bioturbation of Holocene sediments on La Jolla Deep Sea Fan, California.. Journal of Sedimentary Petrology 39, 601606.Google Scholar
Porrenga, D. H. (1966). Clay minerals in recent sediments of the Niger delta.. In “Clays and Clay Minerals, Proceedings, Fourteenth National Conference. Clay Minerals Society.” (Bailey, S. W., Ed.), pp. 221233. Pergamon Press, Oxford, England.CrossRefGoogle Scholar
Prospero, J. M. (1968). Atmospheric dust studies on Barbados.. Bulletin of the American Meteorological Society 49, 645652.CrossRefGoogle Scholar
Prospero, J. M., and Bonatti, E. (1969). Continental dust in the atmosphere of the eastern equatorial Pacific.. Journal of Geophysical Research 74, 33623371.CrossRefGoogle Scholar
Radczewski, O. E. (1939). Eolian deposits in marine sediments.. In “Recent Marine Sediments” (Trask, P.D., Ed.), pp. 496502. American Association of Petroleum Geologists, Tulsa, Oklahoma.Google Scholar
Rex, R. W., and Goldberg, E. D. (1958). Quartz contents of pelagic sediments of the Pacific Ocean.. Tellus 10, 153159.CrossRefGoogle Scholar
Rex, R. W., Syers, J. K., Jackson, M. L., and Clayton, R. N. (1969). Eolian origin of quartz in soils of Hawaiian Islands and in Pacific pelagic sediments.. Science 163, 277279.CrossRefGoogle ScholarPubMed
Rhoads, D. C. (1967). Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts.. Journal of Geology 75, 461476.CrossRefGoogle Scholar
Schubel, J. R. (1968). Turbidity maximum of the northern Chesapeake Bay.. Science 161, 10131015.CrossRefGoogle ScholarPubMed
Shepard, F. P. (1963). “Submarine Geology.” 2d ed. Harper and Row, New York.Google Scholar
Shepard, F. P., Dill, R. F., and von Rad, U. (1969). Physiography and sedimentary processes of La Jolla submarine fan and fan-valley, California. American Association of Petroleum Geologists, Bulletin 53, 390420.Google Scholar
Stevenson, F. J., and Cheng, C-N (1969). Amino acid levels in the Argentine Basin sediments: Correlation with Quaternary climatic changes.. Journal of Sedimentary Petrology 39, 345349.CrossRefGoogle Scholar
Stewart, R. A., Pilkey, O. H., and Nelson, B. W. (1965). Sediments of the northern Arabian Sea.. Marine Geology 3, 411427.CrossRefGoogle Scholar
Sugden, W. (1963). Some aspects of sedimentation in the Persian Gulf.. Journal of Sedimentary Petrology 33, 355364.CrossRefGoogle Scholar
Sverdrup, H. U. (1929). “The Waters of the North-Siberian Shelf: The Norwegian North Polar Expedition with the ‘Maud’ 1918–1925: Scientific Results,” Vol. 4. A. S. John Griegs Boktrykkeri, Bergen, Norway.Google Scholar
Swindale, L. D., and Fan, P-F (1967). Transformation of gibbsite to chlorite in ocean bottom sediments.. Science 157, 799800.CrossRefGoogle ScholarPubMed
Trewartha, G. T. (1954). “An Introduction to Climate.” McGraw-Hill, New York.Google Scholar
Van Andel, Tj. H. (1960). Sources and dispersion of Holocene sediments, northern Gulf of Mexico.. In “Recent Sediments, Northwest Gulf of Mexico.” (Shepard, F. P., Phleger, F. B., and Van Andel, Tj. H., Eds.), pp. 3455. American Association of Petroleum Geologists, Tulsa, Oklahoma.Google Scholar
Wark, J. W., and Keller, F. J. (1963). Preliminary study of sediment sources and transport in the Potomac River Basin.. Interstate Commission on Potomac River Basin Technical Bulletin 1963-11.Google Scholar
Warnke, D. A. (1968). Comments on a paper by H. G. Goodell and N. D. Watkins, “The paleomagnetic stratigraphy of the Southern Ocean: 20° West to 160° East longitude.” Deep-Sea Research 15, 723725.Google Scholar
Watson, J. A., and Angino, E. E. (1969). Ironrich layers in sediments from the Gulf of Mexico.. Journal of Sedimentary Petrology 39, 14121419.Google Scholar
Windom, H. L. (1969). Atmospheric dust records in permanent snowfields: Implications to marine sedimentation.. Geological Society of America, Bulletin 80, 761782.CrossRefGoogle Scholar