Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T09:04:40.473Z Has data issue: false hasContentIssue false

Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China)

Published online by Cambridge University Press:  20 January 2017

Qian Wang
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Xiangdong Yang*
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Nicholas John Anderson
Affiliation:
Department of Geography, Loughborough University, Loughborough LE11 3TU, UK
Xuhui Dong
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
*
* State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, 210008 Nanjing, China. E-mail address:xdyang@niglas.ac.cn (X. Yang).

Abstract

The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climateediatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake’s thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climateecatchmentevegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z.S., Clemens, S.C., Shen, J., Qiang, X.K., Jin, Z.D., Sun, Y.B., Prell, W.L., Luo, J.J., Wang, S.M., Xu, H., Cai, Y.J., Zhou, W.J., Liu, X.D., Liu, W.G., Shi, Z.G., Yan, L.B., Xiao, X.Y., Chang, H., Wu, F., Ai, L., Lu, F.Y., 2011. Glacial-interglacial Indian summer monsoon dynamics. Science 333 (6043), 719723.Google Scholar
Anderson, N.J.,1990. The biostratigraphy and taxonomy of small Stephanodiscus and Cyclostephanos species (Bacillariophyceae) in a eutrophic lake, and their ecological implications. British Phycological Journal 25 (3), 217235.Google Scholar
Anderson, N.J., 2000. Diatoms, temperature and climatic change. European Journal of Phycology 35, 307314.Google Scholar
Battarbee, R.W., Kneen, M.J., 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27, 184188.Google Scholar
Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.J., Bennion, H., Carvalho, L., Juggions, S., 2001. Diatoms. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediments, Terrestrial, Algal, and Siliceous Indicators, 3. Kluwer Academic Publisher, Dordrecht, pp. 155202.Google Scholar
Battarbee, R.W., Grytnes, J.A., Thompson, R., Appleby, P.G., Catalan, J., Korhola, A., Birks, H.J.B., Heegaard, E., Lami, A., 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28, 161179.Google Scholar
Battarbee, R.W., Anderson, N.J., Bennion, H., Simpson, G.L., 2012. Combining limnological and palaeolimnological data to disentangle the effects of nutrient pollution and climate change on lake ecosystems: problems and potential. Freshwater Biology 57, 20912106.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Birks, H.J.B., 2010. Numerical methods for the analysis of diatom assemblage data. In: Smol, J.P., Stoermer, E.F. (Eds.), The Diatoms: Applications for the Environmental and Earth Science. Cambridge University Press, Cambridge, pp. 2354.Google Scholar
Bracht, B.B., Stone, J.R., Fritz, S.C., 2008. A diatom record of late Holocene climate variation in the northern range of Yellowstone National Park, USA. Quaternary International 188, 149155.Google Scholar
Bradbury, J.P., Bezrukova, YeV., Chernyaeva, G.P., Colman, S.M., Khursevich, G., King, J.W., Likoshway, YeV., 1994. A synthesis of post-glacial diatom records from Lake Baikal. Journal of Paleolimnology 10, 213252.Google Scholar
Bradshaw, E.G., Anderson, N.J., 2003. Environmental factors that control the abundance of Cyclostephanos dubius (Bacillariophyceae) in Danish lakes, from seasonal to century scale. European Journal of Phycology 38, 265276.Google Scholar
Cai, Y., Zhang, H., Cheng, H., An, Z.S., Edwards, E., Wang, X., Tan, L., Liang, F., Wang, J., Kelly, M., 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planetary Science Letters 335–336, 135144.Google Scholar
Chen, J.Y., Zhu, H.Z., 1985. Studies on the freshwater centricae of China. Acta Hydrobiologica Sinica 9 (1), 8083 (in Chinese).Google Scholar
Chen, F.H., Chen, X.M., Chen, J.H., Zhou, A.F., Wu, D., Tang, L.Y., Zhang, X.J., Huang, X.Z., Yu, J.Q., 2014. Holocene vegetation history, precipitation changes and indian summer monsoon evolution documented from sediments of Xingyun Lake, south-west China. Journal of Quaternary Science 29 (7), 661674.Google Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D.X., Cai, Y.J., Zhang, M.L., Lin, Y.S., Qing, J.M., An, Z.S., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.Google Scholar
Edlund, M.B., Stoermer, E.F., 2000. A 200,000-year, high-resolution record of diatom productivity and community makeup from Lake Baikal shows high correspondence to the marine oxygen-isotope record of climate change. Limnology and Oceanography 45 (4), 948962.Google Scholar
Engstrom, D.R., Fritz, S.C., Almendinger, J.E., Juggins, S., 2000. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408, 161166.Google Scholar
Fang, X.Q., Hou, G.L., 2010. Synthetically reconstructed Holocene temperature change in China. Scientia Geographica Sinica 31 (4), 385393 (in Chinese).Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300 (5626), 17371739.Google Scholar
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D., Matter, A., 2007. Holocene ITCZ and indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26 (12), 170188.Google Scholar
Fourtanier, E., Kociolek, J.P., 1999. Catalogue of the diatom genera. Diatom Research 14, 1190.Google Scholar
Fritz, S.C., Anderson, N.J., 2013. The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. Journal of Paleolimnology 49 (3), 349362.Google Scholar
Fritz, S.C., Juggins, S., Battarbee, R.W., 1993. Diatom assemblages and ionic characterization of lakes of the northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences 50, 18441856.Google Scholar
Gasse, F., Fontes, J.Ch, 1992. Climatic changes in northwest Africa during the last deglaciation. In: Bard, E., Wallace, W.S. (Eds.), The Last Deglaciation: Absolute and Radiocarbon Chronologies. Nato ASI Series, 12. Springer, Berlin, pp. 295325.Google Scholar
Gasse, F., Van Campo, E., 1994. Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth and Planetary Science Letters 126, 435456.Google Scholar
Griffiths, M.L., Drysdale, R.N., Gagan, M.K., Zhao, J.X., Ayliffe, L.K., Hellstrom, J.C., Hantoro, W.S., Frisia, S., Feng, Y.X., Cartwright, I., St Pierre, E., Fischer, M.J., Suwargadi, B.W., 2009. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature Geoscience 2, 636639.Google Scholar
Grimm, E.C., Gasse, F., Benkaddour, A., Hamouti, N.E., Van Der Kaars, S., Perkins, W.T., Pearce, N.J., Roberts, C.N., 1991. Tilia and Tiliagraph. Illinois State Museum, Springfield, IL.Google Scholar
Gupta, A.K., Anderson, D.M., Overpeck, J.T., 2003. Abrupt changes in the asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354357.Google Scholar
Gupta, A.K., Das, M., Anderson, D.M., 2005. Solar influence on the indian summer monsoon during the Holocene. Geophysical Research Letters 32, L17703. http://dx.doi.org/10.1029/2005GL022685.Google Scholar
Gupta, A.K., Das, M., Clemens, S.C., Mukherjee, B., 2008. Benthic foraminiferal faunal and isotopic changes as recorded in Holocene sediments of the Northwest Indian Ocean. Paleoceanography 23, PA2214. http://dx.doi.org/10.1029/ 2007PA001546.Google Scholar
Hausmann, S., Lotter, A.F., van Leeuwen, J.F.N., Ohlendorf, Ch, Lemcke, G., Grönlund, E., Sturm, M., 2002. Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. The Holocene 12 (3), 279289.Google Scholar
Hausmann, S., Larocque-Tobler, I., Richard, P.J.H., Pienitz, R., St-Onge, G., Fye, F., 2011. Diatom-inferred wind activity at Lac du Sommet, southern Québec, Canada: a multiproxy paleoclimate reconstruction based on diatoms, chironomids and pollen for the past 9500 years. The Holocene 21 (6), 925938.Google Scholar
Haworth, E.Y., 1976. Two late-glacial (Late-Devensian) diatom assemblage profiles from Northern Scotland. New Phytologist 77, 227256.Google Scholar
Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25, 163178.Google Scholar
Hickman, M., Schweger, C., 1991. A palaeoenvironmental study of Fairfax Lake, a small lake situated in the Rocky Mountain Foothills of west-central Alberta. Journal of Paleolimnology 6, 115.Google Scholar
Hodell, D.A., Brenner, M., Kanfoush, S.L., Curtis, J.H., Stoner, J.S., Song, X.L., Wu, Y., Whitmore, T.J., 1999. Paleoclimate of Southwestern China for the past 50,000 yr inferred from lake sediment records. Quaternary Research 52, 369380.Google Scholar
Holland, P.R., Kay, A., 2003. A review of the physics and ecological implications of the thermal bar circulation. Limnologica 33, 153162.Google Scholar
Jarvis, D.I., 1993. Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China. Quaternary Research 39, 325337.Google Scholar
Ji, J., Fan, Y.Q., 1983. Preliminary analysis on the hydrologic characteristics of Lake Lugu. In: The Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences. Qinghai-Xizang Plateau Research, Hengduan Mountains Expedition. Series One. Yunnan People’s Publishing House, Kunming, pp. 214225 (in Chinese).Google Scholar
Kilham, S.S., Theriot, E.C., Fritz, S.C., 1996. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnology and Oceanography 41 (5), 10521062.Google Scholar
Kirilova, E.P., Bluszcz, P., Heiri, O., Cremer, H., Ohlendorf, C., Lotter, A.F., Zolitschka, B., 2008. Seasonal and interannual dynamics of diatom assemblages in Sacrower See (NE Germany): a sediment trap study. Hydrobiologia 614, 159170.Google Scholar
Kramer, A., Herzschuh, U., Mischke, S., Zhang, C.J., 2010. Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeography, Palaeoclimatology, Palaeoecology 286, 2341.Google Scholar
Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae. 1: Teil: Naviculaceae. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süßwasserflora von Mitteleuropa, 2/1. Gustav Fischer Verlag, Stuttgart - Jena, pp. 1876.Google Scholar
Krammer, K., Lange-Bertalot, H., 1988. Bacillariophyceae. 2: Teil: Bacillariaceae, Epithmiaceae, Surirellaceae. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süßwasserflora von Mitteleuropa, 2/2. Gustav Fischer Verlag, Stuttgart - Jena, pp. 1596.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991a. Bacillariophyceae. 3: Teil: Centrales, Fragilariaceae, Eunotiaceae. Unter Mitarbeit von H. Håkannson und M. Nörpel. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süßwasserflora von Mitteleuropa, 2/3. Gustav Fischer Verlag, Stuttgart - Jena, pp. 1576.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991b. Bacillariophyceae. 4: Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süßwasserflora von Mitteleuropa, 2/4. Gustav Fischer Verlag, Stuttgart - Jena, pp. 1437.Google Scholar
Krivtsov, V., Bellinger, E.G., Sigee, D.C., 2000. Changes in the elemental composition of Asterionella formosa during the diatom spring bloom. Journal of Plankton Research 22 (1), 169184.Google Scholar
Laing, T.E., Rühland, K.M., Smol, J.P., 1999. Past environmental and climatic changes related to tree-line shifts inferred from fossil diatoms from a lake near the Lena River Delta, Siberia. The Holocene 9 (5), 547557.Google Scholar
Lamb, H.F., Gasse, F., Benkaddour, A., Hamouti, N.E., Van Der Kaars, S., Perkins, W.T., Pearce, N.J., Roberts, C.N., 1995. Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature 373, 134137.Google Scholar
Li, Y.L., Gong, Z.J., Shen, J., 2012. Effects of eutrophication and temperature on Cyclotella rhomboideo-elliptica Skuja, endemic diatom to China. Phycological Research 60 (4), 288296.Google Scholar
Li, Y.L., Liu, E.F., Xiao, X.Y., Zhang, E.L., Ji, M., 2015a. Diatom response to Asian monsoon variability during the Holocene in a deep lake at the southeastern margin of the Tibetan Plateau. BOREAS 44 (4), 785793.Google Scholar
Li, Y.L., Rioual, P., Shen, J., Xiao, X.Y., 2015b. Diatom response to climatic and tectonic forcing of a Palaeolake at the southeastern margin of the Tibetan Plateau during the late Pleistocene, between 140 and 35 ka BP. Palaeogeography, Palaeoclimatology, Palaeoecology 436, 123134.Google Scholar
Liu, J.B., Chen, F.H., Chen, J.H., Zhang, X.J., Liu, J., Bloemendal, J., 2014. Weakening of the east asian summer monsoon at 1000–1100 A.D. within the medieval climate anomaly: possible linkage to changes in the Indian Ocean-Western Pacific. Journal of Geophysical Research, Atmospheres 119, 22092219.Google Scholar
Lotter, A.F., Bigler, C., 2000. Do diatoms in the Swiss Alps reflect the length of icecover? Aquatic Sciences 62, 125141.Google Scholar
Lotter, A.F., Birks, H.J.B., Hofmann, W., Marchetto, A., 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblageges as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19, 443463.Google Scholar
McKnight, D.M., Smith, R.L., Bradbury, J.P., Baron, J.S., Spaulding, S., 1990. Phytoplankton dynamics in three Rocky Mountain lakes, Colorado, U.S.A. Arctic Antarctic and Alpine Research 22, 264274.Google Scholar
Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289302.Google Scholar
Miller, U., 1971. Diatom floras in the interglacial sediments at Leveäniemi. In: Lundqvist, J. (Ed.), The Interglacial Deposit at the Leveäniemi Mine, Svappavaara, Swedish Lapland. Sveriges Geologiska Undersökning, C658, pp. 104163.Google Scholar
Overpeck, J., Anderson, D., Trumbore, S., Prell, W., 1996. The southwest Indian Monsoon over the last 18000 years. Climate Dynamics 12, 213225.Google Scholar
Pang, H., Li, Z., Theakstone, W.H., 2012. Changes of the hydrological cycle in two typical Chinese monsoonal temperate glacier basins: a response to global warming? Journal of Geographical Sciences 22 (5), 771780.Google Scholar
Podritske, B., Gajewski, K., 2007. Diatom community response to multiple scales of Holocene climate variability in a small lake on Victoria Island, NWT, Canada. Quaternary Science Reviews 26 (2528), 31793196.Google Scholar
Porter, S.C., An, Z.S., Zheng, H.B., 1992. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the Qinling Shan, Central China. Quaternary Research 38, 157169.Google Scholar
Prasad, S., Enzel, Y., 2006. Holocene paleoclimates of India. Quaternary Research 66, 442453.Google Scholar
Rautio, M., Sorvari, S., Korhola, A., 2000. Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. Journal of Limnology 59, 8196.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., et al., 2004. IntCal04, Terrestrial radiocarbon age calibration, 0–26 ka BP. Radiocarbon 46, 10291058.Google Scholar
Reuss, N.S., Hammarlund, D., Rundgren, M., Segerström, U., Eriksson, L., Rosén, P., 2010. Lake ecosystem responses to Holocene climate change at the Subarctic tree-line in Northern Sweden. Ecosystem 13, 393409.Google Scholar
Round, F.E., Crawford, R.M., Mann, D.G., 1990. Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge, p. 731.Google Scholar
Rühland, K., Smol, J.P., 2005. Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226 (12), 116.Google Scholar
Rühland, K., Paterson, A.M., Smol, J.P., 2008. Hemispheric-scale patterns of climaterelated shifts in planktonic diatoms from North American and European lakes. Global Change Biology 14, 27402754.Google Scholar
Salmaso, N., 2005. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnology and Oceanography 50, 553565.Google Scholar
Saros, J.E., Anderson, N.J., 2015. The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biological Reviews 90, 522541.Google Scholar
Saros, J.E., Michel, T.J., Interlandi, S.J., Wolfe, A.P., 2005. Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Canadian Journal of Fisheries and Aquatic Sciences 62, 16811689.Google Scholar
Saros, J.E., Stone, J.R., Pederson, G.T., Slemmons, K.E.H., Spanbauer, T., Schliep, A., Cahl, D., Williamson, C.E., Engstrom, D.R., 2012. Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleo-cological approaches. Ecology 93 (10), 21552164.Google Scholar
Saros, J.E., Strock, K.E., Mccue, J., Hogan, E., Anderson, N.J., 2014. Response of Cyclotella species to nutrients and incubation depth in Arctic lakes. Journal of Plankton Research 36 (2), 450460.Google Scholar
Schindler, D.W., Bayley, S.E., Parker, B.R., 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography 41 (5), 10041017.Google Scholar
Schmidt, R., Psenner, R., Müller, J., Indinger, P., Kamenik, C., 2002. Impact of late glacial climate variations on stratification and trophic state of the meromictic lake Längsee (Austria): validation of a conceptual model by multi proxy studies. Journal of Limnology 61 (1), 4960.Google Scholar
Schmidt, R., Kamenik, C., Kaiblinger, C., Hetzel, M., 2004. Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. Journal of Paleolimnology 32, 177196.Google Scholar
Sharma, S., Joachimski, M., Sharma, M., Tobschall, H.J., Singh, I.B., Sharma, C., Chauhan, M.S., Morgenroth, G., 2004. Lateglacial and Holocene environmental changes in Ganga plain, northern India. Quaternary Science Reviews 23, 145159.Google Scholar
Shen, J., Liu, X.Q., Wang, S.M., Ryo, M., 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136(1), 131140.Google Scholar
Shen, J., Jones, R.T., Yang, X.D., Dearing, J.A., Wang, S.M., 2006. The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China: the role of climate and human forcings. The Holocene 16 (2), 265276.Google Scholar
Shi, Y.F., Kong, Z.C., Wang, S.M., Tang, L.Y., Wang, F.B., Yao, T.D., Zhao, X.T., Zhang, P.Y., Shi, S.H., 1994. The climatic fluctuations and important events of Holocene Megathermal in China. Science in China 37 (3), 289301.Google Scholar
Singh, G., Wasson, R.J., Agarwal, D.P., 1990. Vegetational and seasonal climatic changes since the last full glacial in the Thar desert, northwestern India. Review Palaeobotany Palynology 64, 351358.Google Scholar
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., Biswas, J., 2011. The leading mode of indian summer monsoon precipitation variability during the last millennium. Geophysical Research Letters 38 (15), L15703. http://dx.doi.org/10.1029/2011GL047713.Google Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., Duplessy, J.C., 1993. Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, 322324.Google Scholar
Smol, J.P., Walker, I.R., Leavitt, P.R., 1991. Paleolimnology and hindcasting climatic trends. Verhandlungen des Internationalen Verein Limnologie 24, 12401246.Google Scholar
Sorvari, S., Korhola, A., Thompson, R., 2002. Lake Diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8, 171181.Google Scholar
Tapia, P.M., Fritz, S.C., Baker, P.A., Seltzer, G.O., Dunbar, R.B., 2003. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 194 (13), 139164.Google Scholar
Ter Braak, C.J.F., 1995. Ordination. In: Jongman, R.H.G., ter Braak, C.J.F., van Tongeren, O.F.R. (Eds.), Data Analysis in Community and Landscape Ecology. Cambridge University Press, New York, USA, pp. 91169.Google Scholar
Ter Braak, C.J.F., Smilauer, P., 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, p. 500.Google Scholar
Thamban, M., Kawahata, H., Rao, V.P., 2007. Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications. Journal of Oceanography 63, 10091020.Google Scholar
Wang, Q., 2012. Environmental Evolution of Lugu Lake, Yunnan and Response to Southwest Monsoon Climate Since LGM. PhD dissertation. Nanjing Institute of Geography and Limnology, CAS, Nanjing, China (in Chinese).Google Scholar
Wang, S.M., Dou, H.S., 1998. Chinese Lakes. Science Press, Beijing, pp. 378379 (in Chinese).Google Scholar
Wang, Q., Yang, X.D., Hamilton, P.B., Zhang, E.L., 2012. Linking spatial distributions of sediment diatom assemblages with hydrological depth profiles in a plateau deep-water lake system of subtropical China. Fottea 12 (1), 5973.Google Scholar
Wang, Q., Yang, X.D., Anderson, N.J., Zhang, E.L., Li, Y.L., 2014. Diatom response to climate forcing of a deep, alpine lake (Lugu Hu, Yunnan, SW China) during the Last Glacial Maximum and its implications for understanding regional monsoon variability. Quaternary Science Reviews 86, 112.Google Scholar
Wang, Q., Yang, X.D., Anderson, N.J., Ji, J.F., 2015. Diatom seasonality and sedimentation in a subtropical alpine lake (Lugu Hu, Yunnan-Sichuan, Southwest China). Arctic, Antarctic, and Alpine Research 47 (3), 5566.Google Scholar
Whitmore, T.J., Brenner, M., Song, X.L., 1994a. Environmental implications of the late Quaternary diatom history from Xingyun Hu, Yunnan Province, China. In: Kociolek, J. (Ed.), Proceedings of the 11th International Diatom Symposium, California Academy of Sciences 17, pp. 525538.Google Scholar
Whitmore, T.J., Brenner, M., Engstrom, D.R., Song, X.L., 1994b. Accelerated soil erosion in watersheds of Yunnan Province, China. Journal of Soil and Water Conservation 49, 6772.Google Scholar
Winder, M., Schindler, D.E., 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10 (11), 18441856.Google Scholar
Winder, M., Reuter, J.E., Schladow, S.G., 2009. Lake warming favors small-sized plankton diatom species. In: Proceedings of the Royal Society B, 276, pp. 427435.Google Scholar
Wu, G., Zhang, Q., Zheng, X., Mu, L., Dai, L., 2008. Water quality of Lugu Lake: changes, causes and measurements. International Journal of Sustainable Development and World Ecology 15, 1017.Google Scholar
Xiao, X.Y., Haberle, S.G., Shen, J., Yang, X.D., Han, Y., Zhang, E.L., Wang, S.M., 2014. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quaternary Science Reviews 86, 3548.Google Scholar
Yang, L.F., 1984. The preliminary study on the original classification and distribution law of lakes on the Yunnan Plateau. Transactions of Oceanology and Limnology 1, 34-39.Google Scholar
Zhang, X., Xie, P., Chen, F., Li, S., Qin, J., 2007. Driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status. Freshwater Biology 52 (9), 14631475.Google Scholar
Zhang, J.W., Chen, F.H., Holmes, J.A., Li, H., Guo, X.Y., Wang, J.L., Li, S., , Y.B., Zhao, Y., Qiang, M.R., 2011. Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis. Quaternay Science Reviews 30, 19731987.Google Scholar
Zhang, E.L., Cao, Y.M., Langdon, P., Wang, Q., Shen, J., Yang, X.D., 2013. Within-lake variability of subfossil chironomid assemblage in a large, deep subtropical lake (Lugu lake, Southwest China). Journal of Limnology 72 (1), 117126.Google Scholar
Zhao, Y., Yu, Z.C., Chen, F.H., 2009. Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China. Quaternary International 194, 618.Google Scholar