Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T23:41:06.654Z Has data issue: false hasContentIssue false

El Niño controls Holocene rabbit and hare populations in Baja California

Published online by Cambridge University Press:  20 January 2017

Isaac A. Hart*
Affiliation:
Department of Anthropology, University of Utah, 270 South 1400 East Room 102, Salt lake City 84112-0060, UT, USA
Jack M. Broughton
Affiliation:
Department of Anthropology, University of Utah, 270 South 1400 East Room 102, Salt lake City 84112-0060, UT, USA
Ruth Gruhn
Affiliation:
Department of Anthropology, University of Alberta, 13–15 HM Tory Building, Edmonton, Alberta T6G 2H4, Canada
*
*Corresponding author.E-mail address:i.hart@anthro.utah.edu (I.A. Hart).

Abstract

The El Niño/Southern Oscillation (ENSO) is a major source of climatic variation worldwide, with significant impacts on modern human and animal populations. However, few detailed records exist on the long-term effects of ENSO on prehistoric vertebrate populations. Here we examine how lagomorph (rabbit and hare) deposition rate, population age structure and taxonomic composition from Abrigo de los Escorpiones, a well-dated, trans-Holocene vertebrate fauna from northern Baja California, Mexico, vary as a function of the frequency of wet El Niño events and eastern Pacific sea-surface temperatures (SSTs) derived from eastern Pacific geological records. Faunal indices vary significantly in response to El Niño-based precipitation and SST, with substantial moisture-driven variability in the middle and late Holocene. The late Holocene moisture pulse is coincident with previously documented changes in the population dynamics of other vertebrates, including humans. As the frequency and intensity of ENSO is anticipated to vary in the future, these results have important implications for change in future vertebrate populations.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antevs, E. (1948). The Great Basin, With Emphasis on Glacial and Postglacial Times: Climatic Changes and pre-White Man. III. University of Utah, Google Scholar
Antevs, E. (1952). Climatic history and the antiquity of man in California. University of California Archaeological Survey Reports 16, 2331.Google Scholar
Antevs, E. (1955). Geologic-climatic dating in the west. American Antiquity 20, 317335.Google Scholar
Antinao, J.L. McDonald, E. (2013). An enhanced role for the tropical Pacific on the humid Pleistocene–Holocene transition in southwestern North America. Quaternary Science Reviews 78, 319341.Google Scholar
Barber, R.T. Chavez, F.P. (1983). Biological consequences of El Niño. Science 222, 4629 12031210.CrossRefGoogle ScholarPubMed
Barron, J.A. Metcalfe, S.E. Addison, J.A. (2012). Response of the North American Monsoon to regional changes in ocean surface temperature. Paleoceanography 27, 3 Google Scholar
Bayham, F.E. (1982). A Diachronic Analysis of Prehistoric Animal Exploitation at Ventana Cave. (PhD dissertation) Department of Anthropology, Arizona State University, Tempe AZ.Google Scholar
Bayham, F.E. Hatch, P. (1985). Archaeofaunal remains from the New River area. Doyel, D.E., and Elson, M.D. Hohokam Settlement and Economic System in the Central New River Drainage, Arizona. Soil Systems Publication in Archaeology 4, Phoenix, 405433.Google Scholar
Beever, E.A. Ray, C. Mote, P.W. Wilkening, J.L. (2010). Testing alternative models of climate-mediated extirpations. Ecological Applications 20, 1 164178.CrossRefGoogle ScholarPubMed
Best, T.L. (1996). Lepus californicus. Mammalian Species 530, The American Society of Mammalogists, 110.Google Scholar
Blaauw, M. (2010). Methods and code for ‘classical’ age-modeling of radiocarbon sequences. Quaternary Geochronology 5, 512518.Google Scholar
Broughton, J.M. (2004). Prehistoric human impacts on California birds: evidence from the Emeryville Shellmound avifauna. Ornithological Monographs 56, Google Scholar
Broughton, J.M. Byers, D.A. Bryson, R.A. Eckerle, W. Madsen, D.B. (2008). Did climatic seasonality control late Quaternary artiodactyl densities in western North America?. Quaternary Science Reviews 27, 19 19161937.CrossRefGoogle Scholar
Brown, J.H. (1973). Species diversity of seed-eating desert rodents in sand dune habitats. Ecology 54, 4 775787.Google Scholar
Brown, J.H. Heske, E.J. (1990). Temporal changes in a Chihuahuan Desert rodent community. Oikos 59, 3 290302.Google Scholar
Butler, B.R. (1972). The Holocene or postglacial ecological crisis on the eastern Snake River Plain. Tebiwa 15, 1 4961.Google Scholar
Byers, D.A. Broughton, J.M. (2004). Holocene environmental change, artiodactyl abundances and human hunting strategies in the Great Basin. American Antiquity 69, 2 235255.Google Scholar
Byers, D.A. Smith, C.A. (2007). Ecosystem controls and the archaeofaunal record: an example from the Wyoming Basin, USA. The Holocene 17, 11711183.Google Scholar
Cane, M.A. (2005). The evolution of El Niño, past and future. Earth and Planetary Science Letters 230, 227240.Google Scholar
Caviedes, C. (2001). El Niño in History: Storming Through the Ages. University Press of Florida, Gainesville, Florida.Google Scholar
Chapman, J.A. Sylvilagus bachmani. Mammalian Species 34, (1974). The American Society of Mammalogists, 14.Google Scholar
Chapman, J.A. Willner, G.A. Sylvilagus audubonii. Mammalian Species 106, (1978). The American Society of Mammalogists, 14.Google Scholar
Clark, W.H. Sankey, J.T. (1999). Late Holocene Sonoran desert arthropod remains from a pack rat midden, Cataviña, Baja California Norte, México. Pan-Pacific Entomology 75, 4 183199.Google Scholar
Cobb, K.M. Westphal, N. Sayani, H.R. Watson, J.T. Di Lorenzo, E. Cheng, H. Edwards, R.L. Charles, C.D. (2013). Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 6770.Google Scholar
Conroy, J.L. Overpeck, J.T. Cole, J.E. Shanahan, T.M. Steinitz-Kannan, M. (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos Lake sediment record. Quaternary Science Reviews 27, 11 11661180.Google Scholar
Dalquest, W.W. (1979). Identification of genera of American rabbits of Blancan age. Southwest Naturalist 24, 2 275278.Google Scholar
Dalquest, W.W. Stangl, F.B. Jr. Grimes, J.V. (1989). The third lower premolar of the cottontail, genus Sylvilagus, and its value in the discrimination of three species. American Midland Naturalist 121, 2 293301.Google Scholar
Davis, C.A. (1975). Abundance of black-tailed jackrabbits, desert cottontail rabbits, and coyotes in southeastern New Mexico. Research Report 293, Agricultural Experiment Station. New Mexico State University, Las Cruces, NM.Google Scholar
Davis, L.G. (2003). Geoarchaeology and geochronology of pluvial Lake Chapala, Baja California, Mexico. Geoarchaeology 18, 2 205223.Google Scholar
Diaz, H.F. Markgraf, V. (1992). El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation. Elsevier Inc., New York.Google Scholar
Dominguez, F. Rivera, E. Lettenmaier, D.P. Castro, C.L. (2012). Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models. Geophysical Research Letters 39, 5 Google Scholar
Donders, T.H. Wagner-Cremer, F. Visscher, H. (2008). Integration of proxy data and model scenarios for the mid-Holocene onset of modern ENSO variability. Quaternary Science Reviews 27, 5 571579.Google Scholar
Erb, L.P. Ray, C. Guralnick, R. (2011). On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps). Ecology 92, 9 17301735.Google Scholar
Ernest, S.K. Brown, J.H. Parmenter, R.R. (2000). Rodents, plants and precipitation: spatial and temporal dynamics of consumers and resources. Oikos 88, 3 470482.CrossRefGoogle Scholar
Fagan, B.M. (2007). Floods, famines, and emperors: El Niño and the fate of civilizations. Basic books. Farias, A.A., and Jaksic, F.M. El Niño Events, the Lean Versus Fat Scenario, and Long-Term Guild Dynamics of Vertebrate Predators in a South American Semiarid Ecosystem. Austral Ecology 32, 2 225238.Google Scholar
Farias, A.A. Jaksic, F.M. (2007). El Niño events, the lean versus fat scenario, and long‐term guild dynamics of vertebrate predators in a South American semiarid ecosystem. Austral Ecology 32, 2 225238.Google Scholar
Findley, J.S. Harris, A.H. Wilson, D.E. Jones, C. (1975). Mammals of New Mexico. University of New Mexico Press, Google Scholar
Grayson, D.K. (1977). On the Holocene history of some northern Great Basin lagomorphs. Journal of Mammalogy 58, 4 507513.Google Scholar
Grayson, D.K. (1983). The paleontology of Gatecliff Shelter: small mammals. Thomas, D.H. The Archaeology of Monitor Valley: 2. Gatecliff Shelter. American Museum of Natural History Anthropological Papers 59, (1) 99126.Google Scholar
Grayson, D.K. (1985). The paleontology of Hidden Cave: birds and mammals. Thomas, D.H. The Archaeology of Hidden Cave, Nevada. American Museum of Natural History Anthropological Papers 61, (1) 125161.Google Scholar
Grayson, D.K. (1987). The biogeographic history of small mammals in the Great Basin: observations on the last 20,000 years. Journal of Mammalogy 68, 2 359375.CrossRefGoogle Scholar
Grayson, D.K. (1998). Moisture history and small mammal community richness during the latest Pleistocene and Holocene, northern Bonneville Basin, Utah. Quaternary Research 49, 3 330334.CrossRefGoogle Scholar
Grayson, D.K. (2000). Mammalian responses to Middle Holocene climatic change in the Great Basin of the western United States. Journal of Biogeography 27, 1 181192.Google Scholar
Grayson, D.K. (2005). A brief history of Great Basin pikas. Journal of Biogeography 32, 12 21032111.Google Scholar
Grayson, D.K. (2006). The late Quaternary biogeographic histories of some Great Basin mammals (western USA). Quaternary Science Reviews 25, 21 29642991.CrossRefGoogle Scholar
Grayson, D.K. (2011). The Great Basin: A Natural Prehistory. University of California Press, Google Scholar
Grayson, D.K. Parmalee, P.W. Lyman, R.L. Mead, J.I. (1988). Danger Cave, Last Supper Cave, and Hanging Rock Shelter: the faunas. American Museum of Natural History Anthropological Papers 66, 1 Google Scholar
Gruhn, R. Bryan, A.L. (2009). An interim report on two rockshelter sites with early Holocene occupation in the northern Baja California peninsula. Pacific Coast Archaeological Society Quarterly 42, Google Scholar
Gutiérrez, J.R. Arancio, G. Jaksic, F.M. (2000). Variation in vegetation and seed bank in a Chilean semiarid community affected by ENSO 1997. Journal of Vegetation Science 11, 5 641648.Google Scholar
Hall, E.R. (1981). The Mammals of North America. 2nd edition John Wiley and Sons, NY.Google Scholar
Harris, A.H. (1985). Late Pleistocene Vertebrate Paleoecology of the West. University of Texas Press, Austin.Google Scholar
Hockett, B.S. (2000). Paleobiogeographic changes at the Pleistocene–Holocene boundary near Pintwater Cave, southern Nevada. Quaternary Research 53, 2 263269.CrossRefGoogle Scholar
Holmgren, M. Scheffer, M. Ezcurra, E. Gutiérrez, J.R. Mohren, G.M. (2001). El Niño effects on the dynamics of terrestrial ecosystems. Trends in Ecology and Evolution 16, 2 8994.Google Scholar
Holmgren, C.A. Betancourt, J.L. Rylander, K.A. (2011). Vegetation history along the eastern, desert escarpment of the Sierra San Pedro Mártir, Baja California, Mexico. Quaternary Research 75, 3 647657.Google Scholar
Holmgren, C.A. Betancourt, J.L. Rylander, K.A. (2010). A long-term vegetation history of the Mojave–Colorado Desert ecotone at Joshua Tree National Park. Journal of Quaternary Science 25, 2 222236.Google Scholar
Huey, L.M. (1964). The mammals of Baja California, Mexico. San Diego Society of Natural History 13, 85168.Google Scholar
IPCC (2014). Climate Change 2014: impacts, adaptation, and vulnerability. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., and White, L.L. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Elsevier Inc., Cambridge, United Kingdom and New York, NY, USA. (1132 pp.)Google Scholar
IUCN (2014). The IUCN red list of threatened species. Version 2014.3. (<http://www.iucnredlist.org">www.iucnredlist.org>. Downloaded on 02 April 2015)www.iucnredlist.org>.+Downloaded+on+02+April+2015)>Google Scholar
Jaksic, F.M. (2001). Ecological effects of El Niño in terrestrial ecosystems of western South America. Ecography 24, 241250.Google Scholar
Jaksic, F.M. Silva, S.I. Meserve, P.L. Gutierrez, J.G. (1997). A long-term study of vertebrate predator responses to an El Niño (ENSO) disturbance in western South America. Oikos 78, 341354.Google Scholar
Keith, L.B. Cary, J.R. Rongstad, O.J. Brittingham, M.C. (1984). Demography and ecology of a declining snowshoe hare population. Wildlife Monographs 90, 343.Google Scholar
Kelt, D.A. Wilson, J.A. Konno, E.S. Braswell, J.D. Deutschman, D. (2008). Differential responses of two species of kangaroo rat (Dipodomys) to heavy rains: a humbling reappraisal. Journal of Mammalogy 89, 1 252254.Google Scholar
Latif, M. Keenlyside, N.S. (2008). El Niño/Southern Oscillation response to global warming. Proceedings of the National Academy of Sciences of the United States of America 106, 49 2057820583.Google Scholar
Letnic, M. Tamayo, B. Dickman, C.R. (2005). The responses of mammals to La Niña (El Niño Southern Oscillation)-associated rainfall, predation, and wildfire in central Australia. Journal of Mammalogy 86, 4 689703.Google Scholar
Lightfoot, D.C. Davidson, A.D. McGlone, C.M. Parker, D.G. (2011). Rabbit abundance relative to rainfall and plant production in northern Chihuahuan Desert grassland and shrubland habitats. Western North American Naturalist 70, 4 490499.Google Scholar
Louderback, L.A. Grayson, D.K. Llobera, M. (2010). Middle-Holocene climates and human population densities in the Great Basin, western USA. The Holocene 21, 2 366373.Google Scholar
Lyman, R.L. (1991). Late quaternary biogeography of the pygmy rabbit (Brachylagus idahoensis) in eastern Washington. Journal of Mammalogy 72, 1 110117.Google Scholar
Madsen, D.B. Rhode, D. Grayson, D.K. Broughton, J.M. Livingston, S.D. Hunt, J. Shaver, M.W. III (2001). Late Quaternary environmental change in the Bonneville basin, western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 3 243271.Google Scholar
Marchitto, T.M. Muscheler, R. Ortiz, J.D. Carriquiry, J.D. Van Geen, A. (2010). Dynamical response of the tropical Pacific Ocean to solar forcing during the early Holocene. Science 330, 13781381.Google Scholar
Massimino, J. Metcalfe, D. (1999). New form for the formative. Utah Archaeology 12, 116.Google Scholar
Meggers, B.J. (1994). Archeological evidence for the impact of mega-Niño events on Amazonia during the past two millennia. Climatic Change 28, 4 321338.Google Scholar
Meserve, P.L. Kelt, D.A. Previtali, M.A. Milstead, W.B. Gutiérrez, J.R. (2011). Global climate change and small mammal populations in north-central Chile. Journal of Mammalogy 92, 6 12231235.Google Scholar
Millar, C.I. Westfall, R.D. (2010). Distribution and climatic relationships of the American pika (Ochotona princeps) in the Sierra Nevada and western Great Basin, U.S.A.; periglacial landforms as refugia in warming climates. Arctic Antarctic and Alpine Research 42, 1 7688.Google Scholar
Moy, C.M. Seltzer, G.O. Rodbell, D.T. Anderson, D.M. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.Google Scholar
Neusius, S.W. Flint, P.R. (1985). Cottontail species identification: zooarchaeological use of mandibular measurements. Journal of Ethnobiology 5, 5158.Google Scholar
Orland, M.C. Kelt, D.A. (2007). Responses of a heteromyid rodent community to large-and small-scale resource pulses: diversity, abundance, and home-range dynamics. Journal of Mammalogy 88, 5 12801287.Google Scholar
Orr, R.T. (1940). The rabbits of California. California Academy of Sciences Occasional Papers 19, Google Scholar
Ostfeld, R.S. Keesing, F. (2000). Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends in Ecology and Evolution 15, 6 232237.Google Scholar
Philander, S.G.H. (1985). El Niño and La Niña. Journal of Atmospheric Sciences 42, 23 26522662.Google Scholar
Philander, S.G.H. (1990). El Niño, La Niña, and the Southern Oscillation. Academic Press, London.Google Scholar
Polis, G.A. Hurd, S.D. Jackson, C.T. Piñero, F.S. (1997). El Niño effects on the dynamics and control of an island ecosystem in the Gulf of California. Ecology 78, 6 18841897.Google Scholar
Previtali, M.A. Meserve, P.L. Kelt, D.A. Milstead, W.B. Gutierrez, J.G. (2009). Effects of more frequent and prolonged El Niño events on life-history parameters of the degu, a long-lived and slow-reproducing rodent. Conservation Biology 24, 1 1828.Google Scholar
Previtali, M.A. Lima, M. Meserve, P.L. Kelt, D.A. Gutiérrez, J.G. (2009). Population dynamics of two sympatric rodents in a variable environment: rainfall, resource availability, and predation. Ecology 90, 7 19962006.Google Scholar
Purdue, J.R. (1980). Clinal variation of some mammals during the Holocene in Missouri. Quaternary Research 13, 2 242258.CrossRefGoogle Scholar
Reimer, P.J. et al INTCAL13 and MARINE13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55, 4 (2013). 18691887.Google Scholar
Rhode, D. (2002). Early Holocene juniper woodland and chaparral taxa in the central Baja California peninsula, Mexico. Quaternary Research 57, 1 102108.Google Scholar
Rodbell, D.T. Seltzer, G.O. Anderson, D.M. Abbott, M.B. Enfield, D.B. Newman, J.H. (1999). An ~ 15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 22, 283 516520.CrossRefGoogle Scholar
Sandweiss, D.H. Quilter, J. Climate, Catastrophe, and Culture in the Ancient Americas. Sandweiss, D.H., and Quilter, J. (2008). El Niño, Catastrophism, and Culture Change in Ancient America. Dumbarton Oaks Research Library and Collection, 111.Google Scholar
Sandweiss, D.H. Richardson, J.B. Ill Reitz, E.J. Rollins, H.B. Maasch, K.A. (1996). Geoarchaeological evidence from Peru for a 5000 years BP onset of El Niño. Science 273, 15311533.Google Scholar
Sandweiss, D.H. Maasch, K.A. Burger, R.L. Richardson, J.B. Rollins, H.B. Clement, A. (2001). Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29, 7 603606.Google Scholar
Sankey, J.T. Van Devender, T.R. Clark, W.H. (2001). Late Holocene plants, Cataviña, Baja California. Southwest Naturalist 46, 1 17.Google Scholar
Schmitt, D.N. Lupo, K.D. (2005). The Camels Back Cave mammalian fauna. Schmitt, D.N., and Madsen, D.B. Camels Back Cave. Anthropological Papers 125, University of Utah Press, Salt Lake City.Google Scholar
Schmitt, D.N. Madsen, D.B. Lupo, K.D. (2002). Small-mammal data on early and middle Holocene climates and biotic communities in the Bonneville Basin, USA. Quaternary Research 58, 3 255260.Google Scholar
Shields, P.W. (1960). Movement patterns of brush rabbits in northwestern California. Journal of Wildlife Management 24, 4 381386.Google Scholar
Shulmeister, J. Lees, B.G. (1995). Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at C 4000 BP. Holocene 5, 1 1018.Google Scholar
Simms, S.R. (2008). Ancient Peoples of the Great Basin and the Colorado Plateau. Left Coast Press, Google Scholar
Smith, F.A. Betancourt, J.L. (1998). Response of bushy-tailed woodrats (Neotoma cinerea) to late Quaternary climatic change in the Colorado Plateau. Quaternary Research 50, 1 111.Google Scholar
Smith, F.A. Betancourt, J.L. (2003). The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah. Quaternary Research 59, 2 160171.Google Scholar
Smith, F.A. Betancourt, J.L. Brown, J.H. (1995). Evolution of body size in the woodrat over the past 25,000 years of climate change. Science New Series 270, 5244 20122014.Google Scholar
Smith, F.A. Browning, H. Shepherd, U.L. (1998). The influence of climate change on the body mass of woodrats Neotoma in an arid region of New Mexico, USA. Ecography 21, 140148.Google Scholar
Stenseth, N.C. et al (2002). Ecological effects of climate fluctuations. Science 297, 5585 12921296.Google Scholar
Thibault, K.M. Ernest, S.M. White, E.P. Brown, J.H. Goheen, J.R. (2010). Long-term insights into the influence of precipitation on community dynamics in desert rodents. Journal of Mammalogy 91, 4 787797.Google Scholar
Timmerman, A. et al (1999). Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398, 6729 694697.Google Scholar
Tkadlec, E. Zejda, J. (1998). Small rodent population fluctuations: the effects of age structure and seasonality. Evolutionary Ecology 12, 2 191210.Google Scholar
Wang, B. et al (2013). Northern hemisphere summer monsoon intensified by mega-El Niño/Southern Oscillation and Atlantic Multidecadal Oscillation. Proceedings of the National Academy of Sciences of the United States of America 110, 14 53475352.Google Scholar
Wilkening, J.L. Ray, C. Beever, E.A. Brussard, P.F. (2011). Modeling contemporary range retraction in Great Basin pikas (Ochotona princeps) using data on microclimate and microhabitat. Quaternary International 235, 7788.Google Scholar
Wolverton, S. Dombrosky, S.J. Lyman, R.L. (2014). Practical significance: ordinal scale data and effect size in zooarchaeology. International Journal of Osteoarchaeology http://dx.doi.org/10.1002/oa.2416Google Scholar
Supplementary material: File

Hart et al. supplementary material

Table S1

Download Hart et al. supplementary material(File)
File 37.9 KB