Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T23:29:54.917Z Has data issue: false hasContentIssue false

A glacial refugium and zoogeographic boundary in the Slovak eastern Carpathians

Published online by Cambridge University Press:  07 December 2018

Lucie Juřičková*
Affiliation:
Department of Zoology, Faculty of Science, Charles University in Prague, CZ-12844 Prague 2, Czech Republic
Jitka Horáčková
Affiliation:
Department of Zoology, Faculty of Science, Charles University in Prague, CZ-12844 Prague 2, Czech Republic
Anna Jansová
Affiliation:
Department of Zoology, Faculty of Science, Charles University in Prague, CZ-12844 Prague 2, Czech Republic
Jiří Kovanda
Affiliation:
Dobropolská 26, CZ-10200 Prague 10, Czech Republic
Ján Harčár
Affiliation:
Department of Geography and Applied Geoinformatics, Faculty of Humanities and Natural Sciences, Prešov University, SK-08116 Prešov, Slovakia
Vojen Ložek
Affiliation:
Department of Zoology, Faculty of Science, Charles University in Prague, CZ-12844 Prague 2, Czech Republic
*
*Corresponding author at: Lucie Juřičková, Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Prague 2, Czech Republic. E-mail address: lucie.jurickova@seznam.cz (L. Juřičková).

Abstract

Although the Carpathians in Europe have often been considered a glacial refugium for temperate plants, vertebrates, and molluscs, the fossil records, the only indisputable evidence surviving glacial periods, are as yet scarce. Moreover, the distribution of fossil records is uneven, and some areas have remained unstudied. We present here three molluscan successions from such an area—the border between the western and eastern Carpathians. This area is not only a geographic border but also a border between the oceanic and continental climate in Europe, and the molluscan fauna reflects this. We found a fluctuation of this zoogeographical border during the late glacial period and the Holocene for several snail species with their easternmost or westernmost distribution situated at this border. Such a fluctuation could reflect a small-scale shifting of climate character during the Holocene. For the first time, we recorded the fossil shells of three local endemics, Carpathica calophana, Petasina bielzi, and Perforatella dibothrion. We also found a fully developed woodland snail fauna radiocarbon dated to the Bølling period. This early occurrence of canopy forest snails indicates a possible eastern Carpathian glacial refugium for them, including local endemics, and may reflect a more moderate glacial impact on local biota than expected.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bálint, M., Ujvárosi, L., Theissenger, K., Lehrian, S., Mészáros, N., Pauls, S.U., 2011. The Carpathians as a major diversity hotspot in Europe. In: Zachos, F.E., Habel, J.Ch. (Eds.), Biodiversity Hotspots. Springer, pp. 189205.Google Scholar
Barkasi, Z., 2016. Endemism in the Mammalian fauna of the Carpathians. Proceedings of the Theriological School 14, 315.Google Scholar
Bhagwat, S. A., Willis, K. J., 2008. Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? Journal of Biogeography 35, 464482.Google Scholar
Birks, H.H., 2003. The importance of plant macrofossils in the reconstruction of Lateglacial vegetation and climate: examples from Scotland, western Norway and Minnesota, USA. Quaternary Science Review 22, 453473.Google Scholar
Bronk Ramsey, C., 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Bronk Ramsey, C., 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 10231045.Google Scholar
Bronk Ramsey, C., 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 18091833.Google Scholar
Davies, P., 2008. Snails: Archaeology and Landscape Change. Oxbow Books, Oxford.Google Scholar
de Lattin, G., 1967. Grundriß der Zoogeographie. Gustav Fischer, Jena, Germany.Google Scholar
Dobrowski, S.Z., 2011. A climatic basis for microrefugia. Global Change Biology 17, 10221035.Google Scholar
Evans, J.G., 1972. Land Snails in Archaeology. Seminar Press, London.Google Scholar
Feurdean, A., Klotz, S., Brewer, S., Mosbrugger, V., Tămaş, T., Wohlfarth, B., 2008a. Lateglacial climate development in NW Romania—comparative results from three quantitative pollen based methods. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 121133.Google Scholar
Feurdean, A., Klotz, S., Mosbrugger, V., Wohlfarth, B., 2008b. Pollen-based quantitative reconstruction of Holocene climate variability in NW Romania. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 494504.Google Scholar
Feurdean, A., Persoiu, A., Tantau, I., Stevens, T., Magyari, E.K., Onac, B.B., Markovic, S., et al., 2014. Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quaternary Science Reviews 106, 206224.Google Scholar
Feurdean, A., Spessa, A., Magyari, E.K., Willis, K.J., Veres, D., Hickler, T., 2012. Trends in biomass burning in the Carpathian region over the last 15,000 years. Quaternary Science Reviews 45, 111125.Google Scholar
Feurdean, A., Wohlfarth, B., Björkman, L., Tantau, I., Bennike, O., Willis, K.J., Farkas, S., Robertson, A.M., 2007. The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Review of Paleobotany and Palynology 145, 305320.Google Scholar
Fink, J., 1956. Zur Korellation der Terrassen und Lösse in Ősterreich. Quartär 6, 85108.Google Scholar
Fink, J., 1961. Die Sudostabdachung der Alpen. Mitteilungen den Österreichischen Bodenkundlichen Gesellschaft 6, 126183.Google Scholar
Goodfriend, G.A., Stipp, J.J., 1983. Limestone and the problem of radiocarbon dating of land-snail carbonate. Geology 11, 575577.Google Scholar
Hájek, M., Dudová, L., Hájková, P., Roleček, J., Moutelíková, J., Jamrichová, E., Horsák, M., 2016. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quaternary Science Reviews 133, 4861.Google Scholar
Hájková, P., Horsák, M., Hájek, M., Lacina, A., Buchtová, H., Pelánková, B., 2012. Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusc macrofossils. Boreas 41, 690706.Google Scholar
Hájková, P., Pařil, P., Petr, L., Chattová, B., Grygar, T. M., Heiri, O., 2016. A first chironomid-based summer temperature reconstruction (13–5 ka BP) around 49° N in inland Europe compared with local lake development. Quaternary Science Reviews 141, 94111.Google Scholar
Horáček, I., 2006. Small vertebrates in the Weichselian series in Dzeravá skala Cave: list of the samples and a brief summary. In: Kaminska, L., Kozlowski, J.K., Svoboda, J.A. (Eds.), Pleistocene Environments and Archaeology of the Dzerava skala Cave, Lesser Carpathians, Slovakia. PAN, Krakow, pp. 157167.Google Scholar
Horsák, M., Juřičková, L., Picka, J., 2013. Molluscs of the Czech and Slovak Republics. Nakladatelství Kabourek, Zlín, Czech Republic.Google Scholar
Horáčková, J., Ložek, V., Juřičková, L., 2014. List of malacologically treated Holocene sites with brief review of palaeomalacological research in the Czech and Slovak Republics. Quaternary International 357, 207211.Google Scholar
Huntley, B., Birks, H.J.B., 1983. An Atlas of Past and Present Pollen Maps for Europe 0–13,000 Years Ago. Cambridge University Press, Cambridge.Google Scholar
Jäger, K.D., 1969. Climatic character and oscillations of the Subboreal period in the dry regions of the Central European highlands. In: Wright, H.E., Jr (Ed.), Proceedings of the VIIth Congress of the International Union for Quaternary Research: Quaternary Geology and Climate. Washington, DC, National Academy of Sciences, pp. 3842.Google Scholar
Jamrichová, E., Hájková, P., Horsák, M., Rybníčková, E., Lacina, A., Hájek, M., 2014a. Landscape history, calcareous fen development and historical events in the Slovak Eastern Carpathians. Vegetation History and Archaeobotany 23, 497513.Google Scholar
Jamrichová, E., Potůčková, A., Horsák, M., Hajnalová, M., Bárta, P., Tóth, P., Kuneš, P., 2014b. Early occurrence of temperate oak-dominated forest in the northern part of the Little Hungarian Plain, SW Slovakia. The Holocene 24, 18101824.Google Scholar
Jamrichová, E., Petr, L., Jimenéz-Alfaro, B., Jankovská, V., Dudová, L., Pokorný, P., Kołaczek, P., et al., 2017. Pollen-inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. Journal of Biogeography 44, 23862397.Google Scholar
Jankovská, V., Pokorný, P., 2008. Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80, 307324.Google Scholar
Juřičková, L., Horáčková, J., Ložek, V., 2014a. Direct evidence of Central European forest refugia during the Last Glacial Period based on mollusc fossils. Quaternary Research 82, 222228.Google Scholar
Juřičková, L., Horsák, M., Horáčková, J., Abrhám, V., Ložek, V., 2014b. Patterns of land-snail succession in Central Europe over the last 15,000 years: main changes along environmental, spatial and temporal gradients. Quaternary Science Reviews 93, 155166.Google Scholar
Kerney, M.P., Cameron, R.A.D., Jungbluth, J.H., 1983. Die Landchnecken Nord- und Mitteleuropas. Ein Bestimmungsbuch für Biologen und Naturfreunde. Paul Parey, Hamburg.Google Scholar
Kliment, J., Turis, P., Janišová, M., 2016. Taxa of vascular plants endemic to the Carpathian Mountains. Preslia 88, 1976.Google Scholar
Košťálik, J., 1999. Spraše a fosílne pôdy Východného Slovenska. Ich genéza, chronostratigrafia a využitie. Práce Katedry geografie Prírodovedeckej fakulty Univerzity P. J. Šafárika v Košiciach, Košice, Slovakia.Google Scholar
Kotlík, P., Deffontaine, V., Mascheretti, S., Zima, J., Michaux, J.R., Searle, J.B., 2006. A northern glacial refugium for bank voles (Clethrionomys glareolus). Proceedings of the National Academy of Sciences USA 103, 1486014864.Google Scholar
Kukla, J., Ložek, V., Bárta, J., 1962. Das Lößprofil von Nové Mesto im Waagtal. Eiszeitalter und Gegenwart 12, 7391.Google Scholar
Limondin-Lozouet, N., Preece, R.C., 2004. Molluscan successions from the Holocene tufa of St. Germain-le Vasson, Normandy (France) and their biogeographical significance. Journal of Quaternary Science 19, 5571.Google Scholar
Lisický, M.J., 1991. Mollusca Slovenska. Veda, Bratislava.Google Scholar
Ložek, V., 1964. Quartärmollusken der Tschechoslowakei. Czech Academy of Science, Prague.Google Scholar
Ložek, V., 1982. Faunengeschichtliche Grundlinien zur spät- und nacheiszeitlichen Entwicklung der Molluskenbestände in Mitteleuropa. Rozpravy Československé akademie věd. Bratislava.Google Scholar
Ložek, V., 2000. Palaeoecology of Quaternary Mollusca. Antropozoikum 24, 3559.Google Scholar
Ložek, V., 2006. Last Glacial paleoenvironments of the West Carpathians in the light of fossil malacofauna. Antropozoikum 26, 7384.Google Scholar
Magri, D., Vendramin, G.G., Comps, B., Dupanloup, I., Geburek, T., Gomory, D., Latalowa, M., et al., 2006. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist 171, 199221.Google Scholar
McGlone, M.S., 1983. The history of New Zealand lowland forest since the last glaciation. In: Thompson, K., Hodder, A.P.H., Edmonds, A.S. (Eds.), Lowland Forests in New Zealand. University of Waikato, Waikato, New Zealand, pp. 117.Google Scholar
Meyrick, R.A., 2001. The development of terrestrial mollusc faunas in the Rheinland region (western Germany and Luxembourg) during the Lateglacial and Holocene. Quaternary Science Reviews 20, 16671675.Google Scholar
Mráz, P., Ronikier, P., 2016. Biogeography of the Carpathians: evolutionary and spatial faces of biodiversity. Biological Journal of the Linnean Society 119, 258559.Google Scholar
Novák, J., Trotsiuk, V., Sýkora, O., Svoboda, M., Chytrý, M., 2014. Ecology of Tilia sibirica in a continental hemiboreal forest, southern Siberia: an analogue of a glacial refugium of broad-leaved temperate trees? The Holocene 24, 908918.Google Scholar
Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 16331644.Google Scholar
Peterson, B. J., Graves, W. R., 2016. Chloroplast phylogeography of Dirca palustris L. indicates populations near the glacial boundary at the Last Glacial Maximum in eastern North America. Journal of Biogeography 43, 314327.Google Scholar
Pfenninger, M., Posada, D., Magnin, F., 2003. Evidence for the survival of the Pleistocene climatic change in Northern refugia by the land snail Trochoidea geyeri (Soós 1926) (Helicellinae, Stylommatophora). BMC Evolutionary Biology 3, 8.Google Scholar
Pigati, J.S., Rech, J.A., Nekola, J.C., 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5, 519532.Google Scholar
Pinceel, J., Jordaens, K., Pfenninger, M., Backeljau, T., 2005. Rangewide phylogeography of a terrestrial slug in Europe: evidence for Alpine refugia and rapid colonization after the Pleistocene glaciations. Molecular Ecology 14, 11331150.Google Scholar
Provan, J., Bennett, K.D., 2008. Phylogenetic insights into cryptic glacial refugia. Trends in Ecology and Evolution 23, 564571.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al., 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, Ch., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, Ch., Heaton, T.J., Hoffman, D.L., Hogg, A.D., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, Ch.S.M., van der Plicht, J., 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55(4), 18691887.Google Scholar
Ronikier, M., 2011. Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60, 373389.Google Scholar
Rull, V., 2009. Microrefugia. Journal of Biogeography 36, 481484.Google Scholar
Schmitt, T., Varga, Z., 2012. Extra-Mediterranean refugia: the rule and not the exception? Frontiers in Zoology 9, 22.Google Scholar
Sommer, R.S., Nadachowski, A., 2006. Glacial refugia of mammals in Europe: evidence from fossil records. Mammal Reviews 36, 251265.Google Scholar
Snell, R. S., Cowling, S. A., 2015. Consideration of dispersal processes and northern refugia can improve our understanding of past plant migration rates in North America. Journal of Biogeography 42, 16771688.Google Scholar
Šrámková-Fuxová, G., Záveská, E., Kolář, F., Lučanová, M., Španiel, S., Marhold, K., 2017. Range-wide genetic structure of Arabidopsis halleri (Brassicaceae): glacial persistence in multiple refugia and origin of the Northern Hemisphere disjunction. Botanical Journal of the Linnean Society 185, 321342.Google Scholar
Stuiver, M., Pollach, H.A., 1977. Discussion: Reporting of 14C data. Radiocarbon 19, 355363.Google Scholar
Sümegi, P., 2005. Loess and the Upper Paleolithic Environment in Hungary: An Introduction to the Environmental History of Hungary. Aurea Kiadó, Nagykovácsi, Hungary.Google Scholar
Sümegi, P., Magyari, E., Dániel, P., Molnár, M., Töröcsik, T., 2013. Responses of terrestrial ecosystems to Dansgaard-Oeshger cycles and Heinrich-events: a 28,000-year record of environmental changes from SE Hungary. Quaternary International 293, 3450.Google Scholar
Tzedakis, P.C., Emerson, B.C., Hewitt, G.M., 2013. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends in Ecology and Evolution 28, 696704.Google Scholar
Ursenbacher, S., Carlsson, M., Helfer, V., Tegelström, H., Fumagalli, L., 2006. Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Molecular Ecology 15, 34253437.Google Scholar
Walker, M.J.C., Berkelhammer, M., Björck, S., Cwynar, L.C., Fisher, D.A., Lond, A.J., Lowe, J.J., Newham, R.M., Rasmussen, S.O., Weiss, H., 2012. Formal subdivision of the Holocene Series/Epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy of the (International commission on Stratigraphy). Journal of Quaternary Science 27, 649659.Google Scholar
Wäreborn, I., 1970. Environmental factors influencing the distribution of land molluscs of an oligotrophic area in southern Sweden. Oikos 21, 285291.Google Scholar
Welter-Schultes, F., 2012. European Non-marine Molluscs. Planet Poster Editions, Göttingen.Google Scholar
Wielstra, B., Babik, W., Arntzen, J.W., 2015. The crested newt Triturus cristatus recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biological Journal of the Linnean Society 114, 574587.Google Scholar
Zemanek, B., 1991. The phytogeographical boundary between the East and West Carpathians—past and present. Thaiszia 1, 5967.Google Scholar
Supplementary material: File

Juřičková et al. supplementary material

Table S4

Download Juřičková et al. supplementary material(File)
File 31.9 KB