Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T02:57:58.590Z Has data issue: false hasContentIssue false

Interglacial Growth of Tufa in Croatia

Published online by Cambridge University Press:  20 January 2017

Nada Horvatinčić
Affiliation:
Rud̄er Bošković Institute, 10000 Zagreb, Croatia
Romana Čalić
Affiliation:
Rud̄er Bošković Institute, 10000 Zagreb, Croatia
Mebus A. Geyh
Affiliation:
Geowissenschaftliche Gemeinschaftsaufgaben, 30 655 Hannover, Germany

Abstract

Tufa samples from the Krka River area in Croatia were dated by 14C and 230Th/234U methods. The study area is situated in the karst region of the southern Dinarides. 14C ages of 40 tufa samples collected at the waterfalls coincide with the early Holocene interglaciation, up to 6000 14C yr B.P. Comparison of conventional 14C dates of Holocene tufa and those of speleothems in the Dinaric Karst shows that speleothem formation started several thousand years earlier than tufa growth. Samples of old tufa deposits from the Krka River (17) and Plitvice Lakes (12) area and speleothem samples from caves in Dinaric Karst (5) yield 34 230Th/234U dates, most of which cluster around interglacial marine δ18O stage 5 (21). Eight of 13 older dates belong to interglacial stages 7 and 9; only 5 dates fall within stage 6 and 8 glaciations. 230Th/234U dates of speleothems and tufa samples from central Europe have indicated that these were formed preferentially during warm and humid interglacial and interstadial periods, and it appears that this is true of southern Croatia as well. Stable isotope (δ13C, δ18O) analyses of 40 tufa samples from the Krka River area were compared with stable isotope analyses of tufa from the Plitvice Lakes area. The δ13C values for both locations are similar and range from −10 to −6‰, indicating similar conditions of tufa formation. A systematic difference between the δ18O values of tufa in these two areas reflects the regional distribution of the oxygen composition of precipitation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, A., Smart, P.L., Ford, D.C., (1993). Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 100, 291301.Google Scholar
Čalić, R., (1996). 230Th/234U dating method and its application on carbonate sediments (in Croatian with English summary). University of Zagreb, Croatia.Google Scholar
Chafetz, S.H., Srdoč, D., Horvatinčić, N., (1994). Early diagenesis of Plitvice Lakes waterfall and barrier travertine deposits. Geographic physique et Quaternaire 48, 247255.Google Scholar
Dorale, J.A., González, L.A., Reagan, M.F., Pickett, D.A., Murrell, M.T., Baker, R.G., (1992). A high-resolution record of Holocene climate change in speleothem calcite from cold water cave, Northeast Iowa. Science 258, 16261630.Google Scholar
Emeis, K.C., Rishnow, H.H., Kempe, S., (1987). Travertine formation in Plitvice National Park, Yugoslavia: Chemical versus biological control. Sedimentology 34, 595609.Google Scholar
Falguères, C., Lumley, D., Bischoff, J.L., (1992). U-series dates for stalagmitic flowstone E (Riss/Würm Interglaciation) at Grotte du Lazaret, Nice, France. Quaternary Research 38, 227233.CrossRefGoogle Scholar
Fontes, L.C., Andrews, L.H., Causse, C., Gibert, E., (1992). A comparison of radiocarbon and U/Th ages on continental carbonates. Radiocarbon 34, 602610.Google Scholar
Ford, D., Gospodarič, R., (1989). U series dating studies of Ursus spelaeus deposits in Križna jama, Slovenia. Acta Carsologica 18, 3951.Google Scholar
Franke, H. W., Geyh, M. A., (1970). Isotopenphysikalische Analysenergebnisse von Kalksinter—Überblick zum Stand der Deutung.. Die Höhle 21, , 19.; Wien..Google Scholar
Gascoyne, M., Schwarcz, H.P., Ford, D.C., (1983). Uranium-series ages of speleothems from north-west England: Correlation with Quaternary climate. Philosophical Transactions of the Royal Society of London B 301, 143164.Google Scholar
Genty, D., Massault, M., (1997). Bomb 14C recorded in laminated speleothems: Calculation of dead carbon proportion. Radiocarbon 39, 3348.Google Scholar
Geyh, M.A., (1970). Zeitliche Abgrenzung von Klimaänderungen mit 14C-Daten von Kalksinter und organischen Substanzen. Beihefte zum geologischen Jarbuch 98, 1522.Google Scholar
Geyh, M.A., Hennig, G.J., (1986). Multiple dating of a long flowstone profile. Radiocarbon 28, 503509.CrossRefGoogle Scholar
Golubić, S., (1973). The relationship between blue–green algae and carbonate deposits. Carr, N.G., Whiton, B.A., The Biology of Blue–Green Algae Blackwell Sci, Oxford.434472.Google Scholar
Heijnis, H., van der Plicht, J., (1992). Uranium/thorium dating of Late Pleistocene peat deposits in NW Europe, uranium/thorium isotope systematics and open-system behaviour of peat layers. Chemical Geology (Isotope Geoscience Section) 94, 161171.Google Scholar
Hennig, G.J., Grün, R., Brunnacker, K., (1983). Speleothems, travertines and paleoclimates. Quaternary Research 20, 129.Google Scholar
Herman, J.S., Lorah, M., (1988). Calcite precipitation rates in the field: Measurement and prediction for a travertine-depositing stream. Geochemica et Cosmochemica Acta 52, 23472355.Google Scholar
Horvatinčić, N., (1980). Radiocarbon and tritium measurements in water samples and application of isotopic analyses in hydrology. Fizika 12, 201218.Google Scholar
Horvatinčić, N., Obelić, B., Krajcar Bronić, I., Srdoč, D., Čalić, R., (1999). Ruđer Bošković Institute radiocarbon measurements XIV. Radiocarbon 41, 199214.Google Scholar
Horvatinčić, N., Srdoč, D., Šilar, J., Tvrdikova, H., (1989). Comparison of the 14C activity of groundwater and recent tufa from karst areas in Yugoslavia and Czechoslovakia. Radiocarbon 31, 884892.Google Scholar
Ivanovich, M., Harmon, R.S., (1992). Uranium-Series Disequilibrium. Clarendon Press, Oxford.Google Scholar
Krajcar Bronić, I., Horvatinčić, N., Srdoč, D., Obelić, B., (1992). Experimental determination of the 14C initial activity of calcareous deposits. Radiocarbon 34, 593601.Google Scholar
Krajcar Bronić, I., Horvatinčić, N., Obelić, B., (1998). Two decades of environmental isotope record in Croatia: Reconstruction of the past and prediction of future levels. Radiocarbon 40, 399416.Google Scholar
Marčenko, E., Srdoč, D., Golubić, S., Pezdič, J., Head, M.J., (1989). Carbon uptake in aquatic plants deduced from their natural 13C and 14C content. Radiocarbon 31, 785794.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., Shackleton, N.J., (1987). Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, 129.Google Scholar
Pazdur, A., Pazdur, M.F., (1990). Further investigations on 14C dating of calcareous tufa. Radiocarbon 32, 1722.Google Scholar
Pazdur, A., Pazdur, M.F., Szulc, J., (1988). Radiocarbon dating of Holocene calcareous tufa in Southern Poland. Radiocarbon 30, 133151.Google Scholar
Pazdur, A., Pazdur, M.F., Pawlyta, J., Gogny, A., Olszewski, M., (1995). Paleoclimatic implications of radiocarbon dating of speleothems from the Cracow-Wielun Upland, Southern Poland. Radiocarbon 37, 103110.Google Scholar
Pentecost, A., (1995). The Quaternary travertine deposits of Europe and Asia minor. Quaternary Science Reviews 14, 10051028.Google Scholar
Pentecost, A., Thorpe, P.M., Harkness, D.D., Lord, T.C., (1990). Some radiocarbon dates for tufas of the Craven district of Yorkshire. Radiocarbon 32, 9397.Google Scholar
Plummer, L.N., Parkhurst, D.L., Wigley, T.M.L., (1979). Critical review of the kinetics of calcite dissolution and precipitation. Jenne, E.A., Chemical Modeling in Aqueous Systems 537573.Google Scholar
Schwarcz, H.P., Gascoyne, M., (1984). Uranium-series dating of Quaternary deposits. Mahaney, W.C., Quaternary Dating Methods Elsevier, Amsterdam.3351.Google Scholar
Schwarcz, H.P., Latham, A.G., (1989). Dirty calcites 1. Uranium-series dating of contaminated calcite using leachate alone. Chemical Geology (Isotope Geoscience Section) 80, 3543.Google Scholar
Shackleton, N.J., Opdyke, N.D., (1973). Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes of a 105 year and 106 year scale. Quaternary Research 3, 3955.Google Scholar
Srdoč, D., Brayer, B., Sliepčević, A., (1971). Ruđer Bošković Institute radiocarbon measurements I. Radiocarbon 13, 135140.Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Sliepčević, A., (1983). Radiocarbon dating of tufa in paleoclimatic studies. Radiocarbon 25, 421427.Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar Bronić, I., Sliepčević, A., (1985). Calcite deposition processes in karstwaters with special emphasis on the Plitvice Lakes, Yugoslavia (in Croatian, with English summary). Carsus Iugoslavie 11, 101204.Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar Bronić, I., O'Malley, P., (1986). The effects of contamination of calcareous sediments on their radiocarbon ages. Radiocarbon 28, 510514.Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar Bronić, I., Sliepčević, A., (1987). Ruđer Bošković Institute radiocarbon measurements IX. Radiocarbon 29, 115134.Google Scholar
Srdoč, D., Horvatinčić, N., Krajcar Bronić, I., Obelić, B., Sliepčević, A., (1992). Ruđer Bošković Institute radiocarbon measurements XII. Radiocarbon 34, 155175.CrossRefGoogle Scholar
Srdoč, D., Krajcar Bronić, I., Horvatinčić, N., Obelić, B., (1986). Increase of 14C activity of dissolved inorganic carbon along a river course. Radiocarbon 28, 515521.CrossRefGoogle Scholar
Srdoč, D., Obelić, B., Horvatinčić, N., Culiberg, M., Šercelj, A., Sliepčević, A., (1985). Radiocarbon dating and pollen analyses of two peat bogs in the Plitvice National Park. Acta Botanica Croatica 44, 4146.Google Scholar
Srdoč, D., Obelić, B., Horvatinčić, N., Sliepčević, A., (1980). Radiocarbon dating of calcareous tufa: How reliable data can we expect. Radiocarbon 22, 858862.CrossRefGoogle Scholar
Srdoč, D., Obelić, B., Horvatinčić, N., Krajcar Bronić, I., Marčenko, E., Merkt, J., Wong, H.K., Sliepčević, A., (1986). Radiocarbon dating of lake sediment from two karst lakes in Yugoslavia. Radiocarbon 28, 495502.Google Scholar
Srdoč, D., Sliepčević, A., Obelić, B., Horvatinčić, N., (1977). Ruđer Bošković Institute radiocarbon measurements IV. Radiocarbon 19, 465475.Google Scholar
Srdoč, D., Sliepčević, A., Obelić, B., Horvatinčić, N., (1981). Ruđer Bošković Institute radiocarbon measurements VI. Radiocarbon 23, 410421.Google Scholar
Srdoč, D., Sliepčević, A., Planinić, J., (1975). Ruđer Bošković Institute radiocarbon measurements III. Radiocarbon 17, 149155.Google Scholar
Srdoč, D., Sliepčević, A., Planinić, J., Obelić, B., Breyer, B., (1973). Ruđer Bošković Institute radiocarbon measurements II. Radiocarbon 15, 435441.Google Scholar
Srdoč, D., Osmond, K.J., Horvatinčić, N., Dabous, A.A., Obelić, B., (1994). Radiocarbon and uranium-series dating of the Plitvice Lakes travertines. Radiocarbon 36, 203219.Google Scholar
Zupan, N., (1991). Flowstone datations in Slovenia. Acta Carsologica 20, 189204.Google Scholar