Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T01:17:47.121Z Has data issue: false hasContentIssue false

A lake-level chronology based on feldspar luminescence dating of beach ridges at Tangra Yum Co (Southern Tibet)

Published online by Cambridge University Press:  20 January 2017

Eike F. Rades*
Affiliation:
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, 48149 Münster, Germany Leibniz Institute for Applied Geophysics (LIAG), Geochronology & Isotope Hydrology, Stilleweg 2, 30655 Hannover, Germany
Sumiko Tsukamoto
Affiliation:
Leibniz Institute for Applied Geophysics (LIAG), Geochronology & Isotope Hydrology, Stilleweg 2, 30655 Hannover, Germany
Manfred Frechen
Affiliation:
Leibniz Institute for Applied Geophysics (LIAG), Geochronology & Isotope Hydrology, Stilleweg 2, 30655 Hannover, Germany
Qiang Xu
Affiliation:
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 4A Datun Road, Chaoyang District, Beijing 100101, China
Lin Ding
Affiliation:
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 4A Datun Road, Chaoyang District, Beijing 100101, China
*
*Corresponding author at: Currently working at Institute for Applied Geology, University of Natural Resources and Life, Sciences, Peter Jordan-Str. 70, 1190 Vienna, Austria. E-mail address:EikeF.Rades@gmail.com (E.F. Rades).

Abstract

Many lakes on the Tibetan Plateau exhibit strandplains with a series of beach ridges extending high above the current lake levels. These beach ridges mark former lake highstands and therefore dating their formation allows the reconstruction of lake-level histories and environmental changes. In this study, we establish a lake-level chronology of Tangra Yum Co (fifth largest lake on the Tibetan Plateau) based on luminescence dating of feldspar from 17 beach-ridge samples. The samples were collected from two strandplains southeast and north of the lake and range in elevation from the current shore to 140 m above the present lake. Using a modified post-infrared IRSL protocol at 170°C we successfully minimised the anomalous fading in the feldspar IRSL signal, and obtained reliable dating results. The luminescence ages indicate three different stages of lake-level decline during the Holocene: (1) a phase of rapid decline (~ 50 m) from ~ 6.4 to ~ 4.5 ka, (2) a period of slow decline between ~ 4.5 and ~ 2.0 ka (~ 20 m), and (3) a fast decline by 70 m between ~ 2 ka and today. Our findings suggest a link between a decrease in monsoonal activity and lake-level decline since the early Holocene.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J. (1985). Thermoluminescence Dating. Academic Press, London.Google Scholar
Aitken, M.J. (1998). An Introduction to Optical Dating. Oxford University Press, Oxford.CrossRefGoogle Scholar
Anthony, E.J. (1995). Beach-ridge development and sediment supply: examples from West Africa. Marine Geology 129, 175186.Google Scholar
Auclair, M. (2003). Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37, 487492.Google Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J. (2008). A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Balescu, S., Ritz, J.-F., Lamothe, M., Auclair, M., Todbileg, M. (2007). Luminescence dating of a gigantic palaeolandslide in the Gobi-Altay mountains, Mongolia. Quaternary Geochronology 2, 290295.Google Scholar
Buylaert, J.-P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R. (2012). A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.Google Scholar
Buylaert, J., Murray, A.S., Gebhardt, A.C., Sohbati, R., Ohlendorf, C., Thiel, C., Wastegård, S., Zolitschka, B. (2013). Luminescence dating of the PASADO core 5022-1D from Laguna Potrok Aike (Argentina) using IRSL signals from feldspar. Quaternary Science Reviews 71, 7080.CrossRefGoogle Scholar
Chen, Y., Zong, Y., Li, B., Li, S., Aitchison, J.C. (2013). Shrinking lakes in Tibet linked to the weakening Asian monsoon in the past 8.2 ka. Quaternary Research 80, 189198.CrossRefGoogle Scholar
Daut, G., Mäusbacher, R., Baade, J., Gleixner, G., Kroemer, E., Mügler, I., Wallner, J., Wang, J., Zhu, L. (2010). Late Quaternary hydrological changes inferred from lake level fluctuations of Nam Co (Tibetan Plateau, China). Quaternary International 218, 8693.Google Scholar
Doberschütz, S., Frenzel, P., Haberzettl, T., Kasper, T., Wang, J., Zhu, L., Daut, G., Schwalb, A., Müusbacher, R. (2013). Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China). Journal of Paleolimnology 51, 253266.Google Scholar
Duller, G.A.T. (2008). Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589612. 10.1111/j.1502-3885.2008.00051.x.CrossRefGoogle Scholar
Dykoski, C.A., Edwards, L.R., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J. (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.Google Scholar
Forsyth, A.J., Nott, J., Bateman, M.D. (2010). Beach ridge plain evidence of a variable late-Holocene tropical cyclone climate, North Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 707716.Google Scholar
Frenzel, P., Wrozyna, C., Xie, M., Zhu, L., Schwalb, A. (2010). Palaeo-water depth estimation for a 600-year record from Nam Co (Tibet) using an ostracod-based transfer function. Quaternary International 218, 157165.Google Scholar
Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., Bingyan, L., Yuanfang, L., Qing, L., Mélières, F., Van Campo, E., Fubao, W., Qinsong, Z. (1991). A 13,000-year climate record from western Tibet. Nature 353, 742745.CrossRefGoogle Scholar
Guérin, G., Mercier, N., Adamiec, G. (2011). Dose-rate conversion factors: update. Ancient TL 29, 58.Google Scholar
Harvey, N. (2006). Holocene coastal evolution: barriers, beach ridges, and tidal flats of South Australia. Journal of Coastal Research 221, 9099.Google Scholar
Heyman, J. (2014). Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates. Quaternary Science Reviews 91, 3041.CrossRefGoogle Scholar
Hipondoka, M.H.T., Mauz, B., Kempf, J., Packman, S., Chiverrell, R.C., Bloemendal, J. (2014). Chronology of sand-ridges and the Late Quaternary evolution of the Etosha Pan, Namibia. Geomorphology 204, 553563.Google Scholar
Hou, J., D'Andrea, W.J., Liu, Z. (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews 48, 6779.Google Scholar
Hudson, A.M., Quade, J. (2013). Long-term east–west asymmetry in monsoon rainfall on the Tibetan Plateau. Geology 41, 351354.Google Scholar
Hughes, P.D., Gibbard, P.L., Ehlers, J. (2013). Timing of glaciation during the last glacial cycle: evaluating the concept of a global “Last Glacial Maximum” (LGM). Earth-Science Reviews 125, 171198.Google Scholar
Huntley, D.J., Lamothe, M. (2001). Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38, 10931106.Google Scholar
Jacobs, Z. (2008). Luminescence chronologies for coastal and marine sediments. Boreas 37, 508535.Google Scholar
Kong, P., Na, C., Fink, D., Huang, F., Ding, L. (2007). Cosmogenic 10Be inferred lake-level changes in Sumxi Co basin, Western Tibet. Journal of Asian Earth Sciences 29, 698703.CrossRefGoogle Scholar
Kreutzer, S., Schmidt, C., Fuchs, M.M.C., Dietze, M., Fischer, M. (2012). Introducing an R package for luminescence dating analysis. Ancient TL 30, 18.Google Scholar
Lai, Z.P., Mischke, S., Madsen, D. (2014). Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai–Tibetan Plateau. Journal of Paleolimnology 51, 197210.Google Scholar
Lal, D. (1991). Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439. 10.1016/0012-821X(91)90220-C.Google Scholar
Lee, J., Li, S., Aitchison, J.C. (2009). OSL dating of paleoshorelines at Lagkor Tso, western Tibet. Quaternary Geochronology 4, 335343.CrossRefGoogle Scholar
Li, D., Li, Y., Ma, B., Dong, G., Wang, L., Zhao, J. (2009). Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges. Environmental Research Letters 4, 045204(10 pp.).Google Scholar
Liu, X., Lai, Z., Madsen, D., Yu, L., Liu, K., Zhang, J. (2011). Lake level variations of Qinghai Lake in northeastern Qinghai–Tibetan Plateau since 3.7 ka based on OSL dating. Quaternary International 236, 5764.Google Scholar
Liu, X.-J., Lai, Z.-P., Zeng, F.-M., Madsen, D.B., E., C.-Y. (2013). Holocene lake level variations on the Qinghai–Tibetan Plateau. International Journal of Earth Sciences 102, 20072016.CrossRefGoogle Scholar
Long, H., Lai, Z., Wang, N., Zhang, J. (2011). A combined luminescence and radiocarbon dating study of Holocene lacustrine sediments from arid northern China. Quaternary Geochronology 6, 19.Google Scholar
Long, H., Lai, Z., Frenzel, P., Fuchs, M., Haberzettl, T. (2012). Holocene moist period recorded by the chronostratigraphy of a lake sedimentary sequence from Lake Tangra Yumco on the south Tibetan Plateau. Quaternary Geochronology 10, 136142.CrossRefGoogle Scholar
Long, H., Haberzettl, T., Tsukamoto, S., Shen, J., Kasper, T., Daut, G., Zhu, L., Mäusbacher, R., Frechen, M. (2015). Luminescence dating of lacustrine sediments from Tangra Yumco (southern Tibetan Plateau) using post-IR IRSL signals from polymineral grains. Boreas 44, 139152. 10.1111/bor.12096.Google Scholar
Ma, R., Yang, G., Duan, H., Jiang, J., Wang, S., Feng, X., Li, A., Kong, F., Xue, B., Wu, J., Li, S. (2011). China's lakes at present: number, area and spatial distribution. Science China Earth Sciences 54, 283289.CrossRefGoogle Scholar
Mischke, S., Aichner, B., Diekmann, B., Herzschuh, U., Plessen, B., Wünnemann, B., Zhang, C. (2010). Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau. Chemical Geology 276, 95103.Google Scholar
Morrill, C., Overpeck, J.T., Cole, J.E., Liu, K. (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary Research 65, 232243.Google Scholar
Murray, A.S., Marten, R., Johnston, A., Martin, P. (1987). Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115, 263288.CrossRefGoogle Scholar
Nielsen, A., Murray, A.S., Pejrup, M., Elberling, B. (2006). Optically stimulated luminescence dating of a Holocene beach ridge plain in Northern Jutland, Denmark. Quaternary Geochronology 1, 305312.Google Scholar
Opitz, S., Wünnemann, B., Aichner, B., Dietze, E., Hartmann, K., Herzschuh, U., IJmker, J., Lehmkuhl, F., Li, S., Mischke, S., Plotzki, A., Stauch, G., Diekmann, B. (2012). Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 337–338, 159176.Google Scholar
Ortlieb, L., Fournier, M., Macharé, J. (1992). Sequences of Holocene beach ridges in northern Peru–chronological framework and possible relationships with former El Niño events. Paleo ENSO Records International Symposium, Lima March 1992 215223.Google Scholar
Otvos, E.G. (2000). Beach ridges — definitions and significance. Geomorphology 32, 83108.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.Google Scholar
Prescott, J.R., Stephan, L.G. (1982). The contribution of cosmic radiation to the environmental dose for thermoluminescent dating latitude, altitude and depth dependences. PACT 6, 1725.Google Scholar
Rades, E.F., Hetzel, R., Xu, Q., Ding, L. (2013). Constraining Holocene lake-level highstands on the Tibetan Plateau by 10Be exposure dating: a case study at Tangra Yumco, southern Tibet. Quaternary Science Reviews 82, 6877.Google Scholar
Reimann, T., Tsukamoto, S., Harff, J., Osadczuk, K., Frechen, M. (2011). Reconstruction of Holocene coastal foredune progradation using luminescence dating — an example from the Świna barrier (southern Baltic Sea, NW Poland). Geomorphology 132, 116.Google Scholar
Schütt, B., Berking, J., Frechen, M., Yi, C. (2008). Late Pleistocene lake level fluctuations of the Nam Co, Tibetan Plateau, China. Zeitschrift für Geomorphologie, Supplementary Issues 52, 5775.Google Scholar
Shao, Z., Meng, X., Zhu, D., Zheng, D., Qiao, Z., Yang, C., Han, J., Yu, J., Meng, Q., , R. (2008). Characteristics of the change of major lakes on the Qinghai–Tibet Plateau in the last 25 years. Frontiers of Earth Science in China 2, 364377.Google Scholar
Stone, J.O. (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 23753 10.1029/2000JB900181.CrossRefGoogle Scholar
Sun, Y., Lai, Z., Long, H., Liu, X., Fan, Q. (2010). Quartz OSL dating of archaeological sites in Xiao Qaidam Lake of the NE Qinghai–Tibetan Plateau and its implications for palaeoenvironmental changes. Quaternary Geochronology 5, 360364. 10.1016/j.quageo.2009.02.013.Google Scholar
Tamura, T., Saito, Y., Bateman, M.D., Nguyen, V.L., Ta, T.K.O., Matsumoto, D. (2012). Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta. Marine Geology 326–328, 140153.Google Scholar
Thomsen, K.J., Murray, A.S., Jain, M., Bøtter-Jensen, L. (2008). Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43, 14741486.Google Scholar
Wang, R., Scarpitta, S., Zhang, S., Zheng, M. (2002). Later Pleistocene/Holocene climate conditions of Qinghai–Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth and Planetary Science Letters 203, 461477.Google Scholar
Wang, X., Gong, P., Zhao, Y., Xu, Y., Cheng, X., Niu, Z., Luo, Z., Huang, H., Sun, F., Li, X. (2013). Water-level changes in China's large lakes determined from ICESat/GLAS data. Remote Sensing of Environment 132, 131144.Google Scholar
Wei, K., Gasse, F. (1999). Oxygen isotopes in lacustrine carbonates of West China revisited: implications for post glacial changes in summer monsoon circulation. Quaternary Science Reviews 18, 13151334.Google Scholar
Yan, D., Wünnemann, B. (2014). Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records. Quaternary Science Reviews 95, 95114.Google Scholar
Yu, L., Lai, Z., An, P. (2013). OSL chronology and paleoclimatic implications of paleodunes in the middle and southwestern Qaidam Basin, Qinghai–Tibetan Plateau. Sciences in Cold and Arid Regions 5, 2 211219. 10.3724/SP.J.1226.2013.00211.Google Scholar
Zhang, J., Chen, F., Holmes, J.A., Li, H., Guo, X., Wang, J., Li, S., , Y., Zhao, Y., Qiang, M., Lue, Y. (2011). Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis. Quaternary Science Reviews 30, 19731987.Google Scholar
Zhao, Y., Yu, Z., Zhao, W. (2011). Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes?. Quaternary Science Reviews 30, 11731184.Google Scholar