Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T07:18:15.416Z Has data issue: false hasContentIssue false

Loess–paleosol carbonate clumped isotope record of late Pleistocene–Holocene climate change in the Palouse region, Washington State, USA

Published online by Cambridge University Press:  05 July 2018

Alex R. Lechler*
Affiliation:
Department of Geosciences, Pacific Lutheran University, Tacoma, Washington 98447, USA
Katharine W. Huntington
Affiliation:
Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA
Daniel O. Breecker
Affiliation:
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA
Mark R. Sweeney
Affiliation:
Department of Sustainability and Environment, University of South Dakota, Vermillion, South Dakota 57069, USA
Andrew J. Schauer
Affiliation:
Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA
*
*Corresponding author at: Department of Geosciences, Pacific Lutheran University, Rieke 158, Tacoma, Washington 98447, USA. E-mail address: Lechlear@plu.edu (A.R. Lechler).

Abstract

The Channeled Scabland–Palouse region of the Pacific Northwest (PNW) of the United States preserves geomorphic and pedosedimentary records that inform understanding of late Pleistocene–Holocene paleoclimate change in a region proximal to the last glacial period Cordilleran Ice Sheet. We present a clumped (Δ47) and conventional (δ18O, δ13C) isotopic study of Palouse loess–paleosol carbonates in combination with carbonate radiocarbon (14C) dating to provide new measures of regional late–last glacial (~31–20 cal ka BP) and Holocene soil conditions. Average clumped isotope temperatures (T(Δ47)) for last glacial Palouse loess–paleosol carbonates (9±4°C) are significantly lower than those for Holocene-aged carbonates (T(Δ47)=18±2°C) in study sections. Calculated soil water δ18OVSMOW values (−16±2‰) for last glacial carbonates are also offset relative to those for Holocene-aged samples (−11±1‰), whereas calculated soil CO2 δ13CVPDB values are similar for the Holocene (−16.9±0.2‰) and late–last glacial (−16.7±1.1‰) periods. Together, these paleoclimate metrics indicate late–last glacial conditions of pedogenic carbonate formation in the C3 grassland soils of the Palouse were measurably colder (9±5°C) than during the Holocene and potentially reflect a more arid last glacial paleoclimate across the Palouse, findings in agreement with previous proxy studies and climate model simulations for the region.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Affek, H.P., 2012. Clumped isotope paleothermometry: principles, applications, and challenges. In: Reconstructing Earth’s Deep-Time Climate—The State of the Art in 2012, Paleontological Society Papers, Vol. 18. Paleontological Society, Boulder, CO, pp.101–114.Google Scholar
Annan, J.D., Hargreaves, J.C., 2013. A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate of the Past 9, 367376.Google Scholar
Annan, J.D., Hargreaves, J.C., 2015. A perspective on model-data surface temperature comparison at the Last Glacial Maximum. Quaternary Science Reviews 107, 110.Google Scholar
Bader, N.E., Spencer, P.K., Bailey, A.S., Gastineau, K.M., Tinkler, E.R., Pluhar, C.J., Bjornstad, B.N., 2016. A loess record of pre-Late Wisconsin glacial outburst flooding, Pleistocene paleoenvironment, and Irvingtonian fauna from the Rulo site, southeastern Washington, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 462, 5769.Google Scholar
Baker, V.R., 2009. The Channeled Scabland: a retrospective. Annual Review of Earth and Planetary Sciences 37, 393411.Google Scholar
Baker, V.R., Bjornstad, B.N., Busacca, A.J., Fecht, K.R., Kiver, E.P., Moody, U.L., Rigby, J.G., Stradling, D.F., Tallman, A.M., 1991. Quaternary geology of the Columbia Plateau. In, Quaternary Nonglacial Geology: Conterminous US. Geology of North America Vol. 2. Geological Society of America, Boulder, CO, pp. 215250.Google Scholar
Baker, V.R., Bjornstad, B.N., Gaylord, D.R., Smith, G.A., Meyer, S.E., Alho, P., Breckenridge, R.M., Sweeney, M.R., Zreda, M., 2016. Pleistocene megaflood landscapes of the Channeled Scabland. In: Lewis, R.S., Schmidt, K.L. (Eds.), Exploring the Geology of the Inland Northwest. Geological Society of America Field Guide 41, Geological Society of America, Boulder, CO, pp. 173.Google Scholar
Baker, V.R., Bunker, R.C., 1985. Cataclysmic late Pleistocene flooding from glacial Lake Missoula: a review. Quaternary Science Reviews 4, 141.Google Scholar
Barnosky, C.W., 1985. Late Quaternary vegetation in the southwestern Columbia basin, Washington. Quaternary Research 23, 109122.Google Scholar
Bartlein, P.J., Anderson, K.H., Anderson, P.M., Edwards, M.E., Mock, C.J., Thompson, R.S., Webb, R.S., Webb, T. III, Whitlock, C., 1998. Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 549585.Google Scholar
Bartlein, P.J., Harrison, S.P., Brewer, S., Connor, S., Davis, B.A.S., Gajewski, K., Guiot, J., et al., 2011. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Climate Dynamics 37, 775802.Google Scholar
Becze-Deák, J., Langohr, R., Verrecchia, E.P., 1997. Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction. Geoderma 76, 221252.Google Scholar
Berger, G.W., Busacca, A.J., 1995. Thermoluminescence dating of late Pleistocene loess and tephra from eastern Washington and southern Oregon and implications for the eruptive history of Mount St. Helens. Journal of Geophysical Research: Solid Earth (1978–2012) 100(B11), 2236122374.Google Scholar
Blinnikov, M., Busacca, A., Whitlock, C., 2001. A new 100,000-year phytolith record from the Columbia Basin, Washington, USA. In Meunier, J.D., Colin, F., Phytoliths: Applications in Earth Sciences and Human History. Balkema, Lisse, Netherlands, pp. 2755.Google Scholar
Blinnikov, M., Busacca, A., Whitlock, C., 2002. Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 77101.Google Scholar
Boling, M., Frazier, B., Busacca, A.J., 1998. General Soil Map, Washington. Department of Crop and Soil Sciences, Washington State University, Pullman.Google Scholar
Booth, D.B., Troost, K.G., Clague, J.J., Waitt, R.B., 2003. The Cordilleran ice sheet. Developments in Quaternary Sciences 1, 1743.Google Scholar
Braconnot, P., Harrison, S.P., Kageyama, M., Bartlein, P.J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., Zhao, Y., 2012. Evaluation of climate models using palaeoclimatic data. Nature Climate Change 2, 417424.Google Scholar
Breecker, D.O., 2017. Atmospheric pCO2 control on speleothem stable carbon isotope compositions. Earth and Planetary Science Letters 458, 5868.Google Scholar
Breecker, D.O., Sharp, Z.D., McFadden, L.D., 2009. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin 121, 630640.Google Scholar
Bretz, J.H., 1923. The channeled scablands of the Columbia Plateau. Journal of Geology 31, 617649.Google Scholar
Bretz, J.H., 1969. The Lake Missoula floods and the channeled scabland. Journal of Geology 77, 505543.Google Scholar
Bromwich, D.H., Toracinta, E.R., Wei, H., Oglesby, R.J., Fastook, J.L., Hughes, T.J., 2004. Polar MM5 simulations of the winter climate of the Laurentide Ice Sheet at the LGM. Journal of Climate 17, 34153433.Google Scholar
Bromwich, D.H., Toracinta, E.R., Oglesby, R.J., Fastook, J.L., Hughes, T.J., 2005. LGM summer climate on the southern margin of the Laurentide Ice Sheet: wet or dry? Journal of Climate 18, 33173338.Google Scholar
Burgener, L., Huntington, K.W., Hoke, G.D., Schauer, A., Ringham, M.C., Latorre, C., Díaz, F.P., 2016. Variations in soil carbonate formation and seasonal bias over 4 km of relief in the western Andes (30 S) revealed by clumped isotope thermometry. Earth and Planetary Science Letters 441, 188199.Google Scholar
Busacca, A. J., 1989. Long Quaternary record in eastern Washington, USA, interpreted from multiple buried paleosols in loess. Geoderma 45, 105122.Google Scholar
Busacca, A.J., McDonald, E.V., 1994. Regional sedimentation of late Quaternary loess on the Columbia Plateau: sediment source areas and loess distribution patterns. Washington Division of Geology and Earth Resources Bulletin 80, 181190.Google Scholar
Cerling, T.E., Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. In: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. (Eds.), Climate Change in Continental Isotopic Records, American Geophysical Union, Washington, DC, pp. 217231.Google Scholar
Chen, Y., Polach, H., 1986. Validity of 14C ages of carbonates in sediments. Radiocarbon 28, 464472.Google Scholar
Clague, J.J., 2009. Cordilleran ice sheet. In, Encyclopedia of Paleoclimatology and Ancient Environments. Springer, Dordrecht, Netherlands, pp. 206211.Google Scholar
Clague, J.J., Barendregt, R., Enkin, R.J., Foit, F.F., 2003. Paleomagnetic and tephra evidence for tens of Missoula floods in southern Washington. Geology 31, 247250.Google Scholar
Clynne, M. A., Calvert, A.T., Wolfe, E.W., Evarts, R.C., Fleck, R.J., Lanphere, M.A., 2008. The Pleistocene eruptive history of Mount St. Helens, Washington, from 300,000 to 12,800 years before present. In: Sherrod, D.R., Scott, W.E., Stauffer, P.H. (Eds.), A Volcano Rekindled; the Renewed Eruption of Mount St Helens, 2004–2006. U.S. Geological Survey Professional Paper 1750, USGS Information Services, Denver, CO, pp. 647702.Google Scholar
COHMAP Members. 1988. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 10431052.Google Scholar
Coplen, T.B., 2007. Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochimica et Cosmochimica Acta 71, 39483957.Google Scholar
Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P., Eiler, J.M., 2011. Defining an absolute reference frame for “clumped” isotope studies of CO2 . Geochimica et Cosmochimica Acta 75, 71177131.Google Scholar
Eagle, R.A., Risi, C., Mitchell, J.L., Eiler, J.M., Seibt, U., Neelin, J.D., Gaojun, L., Tripati, A.K., 2013. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Sciences USA 110, 88138818.Google Scholar
Eiler, J.M., 2007. “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters 262, 309327.Google Scholar
Eiler, J.M., 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews 30, 35753588.Google Scholar
Gaylord, D.R., Busacca, A.J., Sweeney, M.R., 2003. The Palouse loess and the Channeled Scabland: a paired Ice-Age geologic system. In: Easterbrook, D.J. (Ed.), Quaternary Geology of the United States. INQUA 2003 Field Guide Volume, Desert Research Institute, Reno, NV, pp. 123134.Google Scholar
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E.A., Schrag, D., Eiler, J.M., 2006. 13 C–18 O bonds in carbonate minerals: a new kind of paleothermometer. Geochimica et Cosmochimica Acta 70, 14391456.Google Scholar
Gocke, M., Pustovoytov, K., Kühn, P., Wiesenberg, G.L.B., Löscher, M., Kuzyakov, Y., 2011. Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: δ13C, 14C. Chemical Geology 283, 251260.Google Scholar
Hanson, M.A., Lian, O.B., Clague, J.J., 2012. The sequence and timing of large late Pleistocene floods from glacial Lake Missoula. Quaternary Science Reviews 31, 6781.Google Scholar
Hargreaves, J.C., Paul, A., Ohgaito, R., Abe-Ouchi, A., Annan, J.D., 2011. Are paleoclimate model ensembles consistent with the MARGO data synthesis? Climate of the Past 7, 917933.Google Scholar
Harrison, S.P., Bartlein, P.J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., Kageyama, M., 2015. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nature Climate Change 5, 735743.Google Scholar
He, B., Olack, G.A., Colman, A.S., 2012. Pressure baseline correction and high‐precision CO2 clumped‐isotope (∆47) measurements in bellows and micro‐volume modes. Rapid Communications in Mass Spectrometry 26, 28372853.Google Scholar
Hough, B.G., Fan, M., Passey, B.H., 2014. Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: implications for paleoelevation and paleoclimate reconstruction. Earth and Planetary Science Letters 391, 110120.Google Scholar
Huntington, K.W., Eiler, J.M., Affek, H.P., Guo, W., Bonifacie, M., Yeung, L.Y., Thiagarajan, N., et al., 2009. Methods and limitations of “clumped” CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. Journal of Mass Spectrometry 44, 13181329.Google Scholar
Huntington, K.W., Lechler, A.R., 2015. Carbonate clumped isotope thermometry in continental tectonics. Tectonophysics 647, 120.Google Scholar
Jasechko, S., Lechler, A., Pausata, F.S.R., Fawcett, P.J., Gleeson, T., Cendón, D.I., Galewsky, J., et al., 2015. Glacial–interglacial shifts in global and regional precipitation δ18O. Climate of the Past Discussions 11, 831872.Google Scholar
Jouzel, J., Koster, R.D., Suozzo, R.J., Russell, G.L., 1994. Stable water isotope behavior during the last glacial maximum: a general circulation model analysis. Journal of Geophysical Research: Atmospheres (1984–2012) 99(D12), 2579125801.Google Scholar
Kelson, J.R., Huntington, K.W., Schauer, A.J., Saenger, C., Lechler, A.R., 2017. Toward a universal carbonate clumped isotope calibration: diverse synthesis and preparatory methods suggest a single temperature relationship. Geochimica et Cosmochimica Acta 197, 104131.Google Scholar
Kemp, R.A., 2001. Pedogenic modification of loess: significance for palaeoclimatic reconstructions. Earth-Science Reviews 54, 145156.Google Scholar
Kim, S.T., O’Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 34613475.Google Scholar
Kluge, T., Affek, H.P., 2012. Quantifying kinetic fractionation in Bunker Cave speleothems using Δ47. Quaternary Science Reviews 49, 8294.Google Scholar
Kutzbach, J.E., Wright, H.E., 1985. Simulation of the climate of 18,000 years BP: results for the North American/North Atlantic/European sector and comparison with the geologic record of North America. Quaternary Science Reviews 4, 147187.Google Scholar
MARGO Project Members. 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience 2, 127132.Google Scholar
McDonald, E.V., Busacca, A.J., 1990. Interaction between aggrading geomorphic surfaces and the formation of a Late Pleistocene paleosol in the Palouse loess of eastern Washington state. Geomorphology 3, 449469.Google Scholar
McDonald, E.V., Busacca, A.J., 1992. Late Quaternary stratigraphy of loess in the Channeled Scabland and Palouse regions of Washington State. Quaternary Research 38, 141156.Google Scholar
McDonald, E.V., Sweeney, M.R., Busacca, A.J., 2012. Glacial outburst floods and loess sedimentation documented during Oxygen Isotope Stage 4 on the Columbia Plateau, Washington State. Quaternary Science Reviews 45, 1830.Google Scholar
Mix, A.C., Bard, E., Schneider, R., 2001. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657.Google Scholar
Monnin, E., Indermühle, A., Daellenbach, A., Flueckiger, J., Stauffer, B., Stocker, T.F., Raynaud, D., Barnola, J.-M., 2001. Atmospheric CO2 concentrations over the Last Glacial Termination. Science 291, 112114.Google Scholar
O’Connor, J.E., Baker, V.R., 1992. Magnitudes and implications of peak discharges from glacial Lake Missoula. Geological Society of America Bulletin 104, 267279.Google Scholar
O’Geen, A.T., Busacca, A.J., 2001. Faunal burrows as indicators of paleo-vegetation in eastern Washington, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 169, 2337.Google Scholar
Otto-Bliesner, B.L., Schneider, R., Brady, E.C., Kucera, M., Abe-Ouchi, A., Bard, E., Braconnot, P., et al., 2009. A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum. Climate Dynamics 32, 799815.Google Scholar
Passey, B.H., 2012. Reconstructing terrestrial environments using stable isotopes in fossil teeth and paleosol carbonates. In: Reconstructing Earth’s Deep-Time Climate—the State of the Art in 2012, Paleontological Society Papers, Vol. 18. Paleontological Society, Boulder, CO, pp. 167–193.Google Scholar
Passey, B.H., Levin, N.E., Cerling, T.E., Brown, F.H., Eiler, J.M., 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences USA 107, 1124511249.Google Scholar
Pluhar, C.J., Bjornstad, B.N., Reidel, S.P., Coe, R.S., Nelson, P.B., 2006. Magnetostratigraphic evidence from the Cold Creek bar for onset of ice-age cataclysmic floods in eastern Washington during the Early Pleistocene. Quaternary Research 65, 123135.Google Scholar
Quade, J., Cerling, T.E., Bowman, J.R., 1989. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geological Society of America Bulletin 101, 464475.Google Scholar
Quade, J., Eiler, J., Daëron, M., Achyuthan, H., 2013. The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica et Cosmochimica Acta 105, 92107.Google Scholar
Richardson, C.A., McDonald, E.V., Busacca, A.J., 1997. Luminescence dating of loess from the northwest United States. Quaternary Science Reviews 16, 403415.Google Scholar
Ringham, M.C., Hoke, G.D., Huntington, K.W., Aranibar, J.N., 2016. Influence of vegetation type and site-to-site variability on soil carbonate clumped isotope records, Andean piedmont of Central Argentina (32–34 S). Earth and Planetary Science Letters 440, 111.Google Scholar
Romanek, C.S., Grossman, E.L., Morse, J.W., 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, 419430.Google Scholar
Ross, S.M., 2003. Peirce’s criterion for the elimination of suspect experimental data. Journal of Engineering Technology 20, 3841.Google Scholar
Schauble, E.A., Ghosh, P., Eiler, J.M., 2006. Preferential formation of 13 C–18 O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochimica et Cosmochimica Acta 70, 25102529.Google Scholar
Schauer, A.J., Kelson, J., Saenger, C., Huntington, K.W., 2016. Choice of 17O correction affects clumped isotope (Δ47) values of CO2 measured with mass spectrometry. Rapid Communications in Mass Spectrometry 30, 26072616.Google Scholar
Schmittner, A., Urban, N.M., Shakun, J.D., Mahowald, N.M., Clark, P.U., Bartlein, P.J., Mix, A.C., Rosell-Melé, A., 2011. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 13851388.Google Scholar
Schubert, B.A., Jahren, A.H., 2015. Global increase in plant carbon isotope fractionation following the Last Glacial Maximum caused by increase in atmospheric pCO2 . Geology 43, 435438.Google Scholar
Stevenson, B.A., Kelly, E.F., McDonald, E.V., Busacca, A.J., 2005. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124, 3747.Google Scholar
Stevenson, B.A., Kelly, E.F., McDonald, E.V., Busacca, A.J., Welker, J.M., 2010. Oxygen isotope ratios in Holocene carbonates across a climatic gradient, eastern Washington State, USA: evidence for seasonal effects on pedogenic mineral isotopic composition. The Holocene 20, 575583.Google Scholar
Sweeney, M.R., Busacca, A.J., Gaylord, D.R., 2005. Topographic and climatic influences on accelerated loess accumulation since the last glacial maximum in the Palouse, Pacific Northwest, USA. Quaternary Research 63, 261273.Google Scholar
Sweeney, M.R., Busacca, A.J., Richardson, C.A., Blinnikov, M., McDonald, E.V., 2004. Glacial anticyclone recorded in Palouse loess of northwestern United States. Geology 32, 705708.Google Scholar
Sweeney, M.R., Gaylord, D.R., Busacca, A.J., 2007. Evolution of Eureka Flat: a dust-producing engine of the Palouse loess, USA. Quaternary International 162, 7696.Google Scholar
Takeuchi, A., Goodwin, A.J., Moravec, B.G., Larson, P.B., Keller, C.K., 2009. Isotopic evidence for temporal variation in proportion of seasonal precipitation since the last glacial time in the inland Pacific Northwest of the USA. Quaternary Research 72, 198206.Google Scholar
Thompson, R.S., Whitlock, C., Bartlein, P.J., Harrison, S.P., Spaulding, W.G., 1993. Climatic changes in the western United States since 18,000 yr BP. In: Wright, H.E., Jr., Kutzbach, J.E., Webb, T., III, Ruddiman, W.F., Alayne, S.-P.F., Bartlein, P.J. (Eds.), Global Climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, MN, pp. 468513.Google Scholar
Tobin, T.S., Schauer, A.J., Lewarch, E., 2011. Alteration of micromilled carbonate δ18O during Kiel Device analysis. Rapid Communications in Mass Spectrometry 25, 21492152.Google Scholar
Waitt, R.B., 1985. Case for periodic, colossal jökulhlaups from Pleistocene glacial Lake Missoula. Geological Society of America Bulletin 96, 12711286.Google Scholar
Whitlock, C., Bartlein, P.J., 1997. Vegetation and climate change in northwest America during the past 125 ka. Nature 388, 5761.Google Scholar
Whitlock, C., Bartlein, P.J., Markgraf, V., Ashworth, A.C., 2001. The midlatitudes of North and South America during the Last Glacial Maximum and early Holocene: similar paleoclimatic sequences despite differing large-scale controls. In: Markgraf, V., Interhemispheric Climate Linkages: Present and Past Interhemispheric Climate Linkages in the Americas and their Societal Effects. Academic, New York, pp. 391–416.Google Scholar
Williams, G.E., Polach, H.A., 1971. Radiocarbon dating of arid-zone calcareous paleosols. Geological Society of America Bulletin 82, 30693086.Google Scholar
Yang, W., Amundson, R., Trumbore, S., 1994. A model for soil 14CO2 and its implications for using 14C to date pedogenic carbonate. Geochimica et Cosmochimica Acta 58, 393399.Google Scholar
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: forms and formation processes. Earth-Science Reviews 157, 117.Google Scholar
Supplementary material: File

Lechler et al. supplementary material

Lechler et al. supplementary material 1

Download Lechler et al. supplementary material(File)
File 1.3 MB
Supplementary material: PDF

Lechler et al. supplementary material

Lechler et al. supplementary material 2

Download Lechler et al. supplementary material(PDF)
PDF 33.1 KB