Published online by Cambridge University Press: 20 January 2017
Two independent data sets are used to develop a model for reconstructing sea-surface temperature and dynamic height anomaly distributions for the California Current during the last 8000 years. The first data set, all hydrographic data available for the California Current region, was used to determine the statistical relationships between the historical record of sea-surface conditions in the Santa Barbara Basin and all one-degree-square grid points of the California Current area. Given these relationships and the second data set, an 8000-from the Santa Barbara Basin, past sea-surface conditions throughout the California Current can be estimated for times before historical observations. The 8000-year record of sea-surface conditions was estimated by analysis of the radiolarian fauna found in a varved sediment core from the Santa Barbara Basin (Pisias, N. G., 1978 year record of sea-surface temperatures and dynamic height anomalies , Quaternary Research 10, 366–384). The reconstructions of sea-surface temperature and dynamic height anomalies indicate that at times of cold sea-surface conditions in the Santa Barbara Basin, the flow of the California Current was much stronger than it is today or was during the times of the warmest sea-surface conditions during the last 8000 years. The atmospheric circulation during the winter of 1950, the period of the coldest recorded sea-surface temperatures in the Santa Barbara Basin based on the historical data set, contained a strong northerly component in the winds which is consistent with the inferred increase in the California Current at times of cold sea-surface temperatures. Times of warm sea-surface temperatures in the Santa Barbara Basin are characterized by decreased southward flow of the California Current and a marked increase in northward flow into the Santa Barbara Basin itself. In the historical record, times of warm sea-surface temperatures are often associated with high precipitation in southern California. The atmospheric circulation during the winter of 1968–1969 is characterized by strong eastward flow over southern California and a northward transport of warm humid air from the tropics into the region of southern California producing the high rainfall observed. The persistence of this atmospheric circulation could produce the more zonal flow predicted for the California Current during times of warmer average conditions in the Santa Barbara Basin.