Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T09:52:30.013Z Has data issue: false hasContentIssue false

Modern and Holocene microbial mats and associated microbially induced sedimentary structures (MISS) on the southeastern coast of Tunisia (Mediterranean Sea)

Published online by Cambridge University Press:  20 November 2020

Rached Lakhdar*
Affiliation:
University of Carthage, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES07, 2092, Tunis, Tunisia
Mohamed Soussi*
Affiliation:
University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES07, 2092, Tunis, Tunisia
Rachida Talbi
Affiliation:
Georessources Laboratory, Research Center and Water Technologies (CERTE), Technopark of Borj-Cedria, BP 273, 8020Soliman, Tunisia
*
*Corresponding author at: University of Carthage, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia. E-mail address: rached.lakhdar@fsb.rnu.tn (R. Lakhdar).
**Corresponding author at: University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES07, 2092, Tunis, Tunisia. E-mail address: mohamed.soussi@fst.utm.tn (M. Soussi).

Abstract

On the southeastern Tunisian coastline, very diverse living microbial mats colonize the lower supratidal and intertidal zones, and locally may extend into the upper infratidal zone. The interaction between the benthic cyanobacteria and their siliciclastic substratum leads to the development of several types of microbially induced sedimentary structures (MISS). The mapping of the microbial mats has allowed the identification of the types of MISS that characterize the different segments of the coastal environment. The modern microbial mats have been compared with those recorded at the top of the Holocene deposits, which are composed of biodegraded microbial black mats alternating with white laminae made of clastic and evaporitic sediments, indicative of very high frequency cycles of flood and drought. A hypothetic profile showing their occurrences along the different areas bordering the coastline is proposed as a guide for the reconstruction of the ancient depositional environment. The roles of tidal dynamics, storms, and climate in controlling their genesis and spatial distribution, are discussed and highlighted. The modern MISS of southeastern Tunisia are compared with their equivalents that are well documented through the different geological eras.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, J., Cabeza, S., Masqué, P., Martínez-Alonso, M., Mir, J., Esteve, I., 1999. 210Pb atmospheric flux and growth rates of a microbial mat from the northwestern Mediterranean Sea (Ebro River Delta). Environmental Science & Technology 33, 37113715.Google Scholar
Aref, A.M., 1998. Holocene stromatolites and microbial laminites associated with lenticular gypsum in a marine-dominated environment, Ras el Shetan, Gulf of Aqaba, Egypt. Sedimentology 45, 245256.10.1046/j.1365-3091.1998.00136.xCrossRefGoogle Scholar
Baldauf, S.L., Palmer, J.D., 1990. Evolutionary transfer of the chloroplast tufa gene to the nucleus. Nature 344, 262265.10.1038/344262a0CrossRefGoogle ScholarPubMed
Ben Haj Ali, M., Jedoui, Y., Dali, T., Ben Salem, H., Memmi, L., 1985. Carte géologique de la Tunisie 1:500000. Office National des Mines, Tunis.Google Scholar
Boston, P. J., Spilde, M.N., Northup, D.E., Melim, L.A., Soroka, D.S., Kleina, L.G., Lavoie, H.K., et al. 2001. Cave biosignature suites: microbes, minerals, and Mars. Astrobiology, 1, 2555.10.1089/153110701750137413CrossRefGoogle ScholarPubMed
Bouougri, E., Porada, H., 2002. Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton (Anti-Atlas, Morocco). Sedimentary Geology 153, 85106.10.1016/S0037-0738(02)00103-3CrossRefGoogle Scholar
Bouougri, E., Porada, H., 2007. Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. Journal of African Earth Sciences 48, 3848.10.1016/j.jafrearsci.2007.03.004CrossRefGoogle Scholar
Brahim, M., Atoui, A., Sammari, C., Aleya, L., 2014. Surface sediment dynamic along the eastern coast of Djerba Island (Gabes Gulf, Tunisia). Journal of African Earth Sciences 92, 4554.10.1016/j.jafrearsci.2014.01.003CrossRefGoogle Scholar
Cameron, B., Cameron, D., Jones, J.R., 1984. Modern algal mats in intertidal and supratidal quartz sands, northeastern Massachusetts, U.S.A. In: Curran, H.A. (ed.) 1985. Biogenic Structures: Their Use in Interpreting Depositional Environments. SEPM Special Publication, 35: 364 p.CrossRefGoogle Scholar
Carr, N.G., Whitton, B.A., 1982. The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford, 704 pp.Google Scholar
Cornee, A., 1989. Communautés benthiques à cyanobactéries des milieux hypersalés: intérêt géologique, Bulletin de la Société Botanique de France. Actualités Botaniques 136, 131145.Google Scholar
Cristina, M.P., Barajas, E.V., Cantero, G.S., 2018. Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electronic Journal of Biotechnology 31, 4856.Google Scholar
Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments: their roles in food webs and marine processes. Oceanography and Marine Biology Annual Review 28, 73153.Google Scholar
Donkor, V., Häder, D.P., 1991. Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria. FEMS Microbiology Letters, 86, 159168.10.1111/j.1574-6968.1991.tb04805.xCrossRefGoogle Scholar
Ellouze, M., Azri, C., Abida, H., 2009. Spatial variability of monthly and annual rainfall data over Southern Tunisia. Journal of Atmospheric Research 93, 832839.10.1016/j.atmosres.2009.04.005CrossRefGoogle Scholar
Eyre, B.D., Ferguson, A.J., 2002. Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae-and macroalgae-dominated warm temperate Australian lagoons. Marine Ecology Progress Series 229, 4359.10.3354/meps229043CrossRefGoogle Scholar
Gavish, E., Krumbein, W.E., Halevy, J., 1985. Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system of the Gavish Sabkha. In: Friedman, G.M., Krumbein, W.E. (Eds.) Hypersaline Ecosystems, Springer, Berlin, Heidelberg, pp. 186217.10.1007/978-3-642-70290-7_12CrossRefGoogle Scholar
Gehling, J.G., 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. In: J.W. Hagadorn, F. Pflueger and D.J. Bottjer (Eds.), Unexplored microbial worlds, Palaios, pp. 40–57.10.2307/3515360CrossRefGoogle Scholar
Gehling, J.G., Droser, M.L., 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews, 96, 196206.10.1016/j.earscirev.2009.03.002CrossRefGoogle Scholar
Gerdes, G., 2007. Structures left by modern microbial mats in their host sediments. In: Schieber, J., Bose, P., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O., Atlas of microbial mat features preserved within the siliciclastic rock record Volume 2 1st Edition. Elsevier, Amsterdam, pp. 538.Google Scholar
Gerdes, G., Claes, M., Dunajtschik-Piewak, K., Riege, H., Krumbein, W.E., Reineck, H.E., 1993. Contribution of microbial mats to sedimentary surface structures. Facies 29, 6174.10.1007/BF02536918CrossRefGoogle Scholar
Gerdes, G., Klenke, T., 2003. Geologische Bedeutung ökologischer Zeiträume in biogener Schichtung (Mikrobenmatten, potentielle Stromatolithe). Mitt Ges Geological Bergbaustud Oesterreich, 46, 3549.Google Scholar
Gerdes, G., Klenke, T., Noffke, N., 2000. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47, 279308.10.1046/j.1365-3091.2000.00284.xCrossRefGoogle Scholar
Gerdes, G., Krumbein, W.E., 1987. Biolaminated deposits. Lecture Notes in Earth Sciences 9, 183 pp.Google Scholar
Gerdes, G., Krumbein, W.E., Reineck, H.E., 1991. Biolaminations- ecological versus depositional dynamics. In: G. Einsele, G., Ricken, W., Seilacher, A. (Eds.), Cycles and events in stratigraphy, Springer, Berlin, pp. 592607.Google Scholar
Gerdes, G., Krumbein, W.E., Reineck, H.E., 1994. Microbial mats as architects of sedimentary surface structures. In: Krumbein, W.E., Paterson, D.M., Stal, L.J. (Eds.) Biostabilization of sediments. BIS, Oldenburg, pp. 165182.Google Scholar
Golubic, S., 1976. Organisms that build stromatolites. In: Walter, M.R. (Ed.) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp. 113126.Google Scholar
Hagadorn, J.W., Bottjer, D.J., 1997. Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian–Cambrian transition. Palaios 14, 7385.10.2307/3515362CrossRefGoogle Scholar
Häntzschel, W., Reineck, H.E., 1968. Fazies-Untersuchungen im Hettangium von Helmstedt (Niedersachsen). Mitteilungen des Geologischen Staatsinstituts Hamburg 37, 539.Google Scholar
Jorgensen, R.A., Rothstein, S.J., Reznikoff, W.S., 1979. A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Molecular and General Genetics MGG, 177, 6572.10.1007/BF00267254CrossRefGoogle ScholarPubMed
Kelly, L.B., Narbonne, G.M., James, N.P., 2004. Paleoenvironments and growth of early Neoproterozoic calcimicrobial reefs: platformal Little Dal Group, northwestern Canada. Precambrian Research 133, 249269.Google Scholar
Kendall, CGSTC., Skipwith, PADE., 1969. Geomorphology of a recent shallow-water carbonate province: Khor Al Bazam, Trucial Coast, Southwest Persian Gulf. Geological Society of America Bulletin 80, 865891.10.1130/0016-7606(1969)80[865:GOARSC]2.0.CO;2CrossRefGoogle Scholar
Kinsman, D.J.J., Park, R.K., 1976. Algal belt and coastal sabkha evolution, Trucial Coast, Persian Gulf. In: Walter, R.M. (Ed.), Stromatolites. Developments in Sedimentology, vol. 20, pp. 421–433.10.1016/S0070-4571(08)71149-XCrossRefGoogle Scholar
Kjeldahl, J., 1883. Sur une nouvelle méthode de dosage de l'azote dans les substances organiques (French summary: Resumé du CR Trav. Lab. Carlsberg; separately paged section), 2 (Juni), 1–12.Google Scholar
Kovalchuk, O., Owttrim, G.W., Konhauser, K.O., Gingras, M.K., 2017. Desiccation cracks in siliciclastic deposits: microbial mat-related compared to abiotic sedimentary origin. Sedimentary Geology 347, 6778.10.1016/j.sedgeo.2016.11.002CrossRefGoogle Scholar
Lakhdar, R., 1987. Contribution à l'étude sédimentologique et géochimique des sédiments superficiels de la Sabkha Boujmel (Sud-est de la Tunisie). Mémoire D.E.A., Université de Tunis, Fac. Sci. de Tunis-Tunisie, 192 p.Google Scholar
Lakhdar, R., Soussi, M., 2007. Les tapis microbiens du littoral du Sud-Est de la Tunisie: répartition spatiale et structures sédimentaires associées (MISS). Revue Méditerranéenne de l'Environnement 2, 293311.Google Scholar
Lakhdar, R., Soussi, M., Ben Ismail, M.H., M'Rabet, A., 2006. A Mediterranean Holocene restricted coastal lagoon under arid climate: case of the sedimentary record of Sabkha Boujmel (SE Tunisia) Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 177191.10.1016/j.palaeo.2006.02.014CrossRefGoogle Scholar
Logan, B.W., 1970. Carbonate sedimentation and environments, Shark Bay, Western Australia (Vol. 13). American Association of Petroleum Geologists.Google Scholar
Logan, B.W., Hoffman, P.E., Gebelein, C.D., 1974. Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. American Association of Petroleum Geologists Memoir 22, Tulsa, OK, pp. 140194.Google Scholar
Marquer, L., Pomel, S., Abichou, A., Schulz, E., Kaniewski, D., Van Campo, E., 2008. Late Holocene high resolution palaeoclimatic reconstruction inferred from Sebkha Mhabeul, southeast Tunisia. Quaternary Research, 70, 240250.10.1016/j.yqres.2008.06.002CrossRefGoogle Scholar
Masmoudi, S., Yaich, C., Yamoun, M., 2005. Evolution et morphodynamique des iles barriers et des fleches littorales associées à des embouchures microtidales dans le Sud-Est tunisien. Bulletin de l'Institut Scientifique, section Sciences de la Terre 27, 6581.Google Scholar
Mékrazi, A.F., 1975. Contribution à l’étude géologique et hydrogéologique de la région de Gabès Nord. Thèse es- sciences de la terre (Mention Hydrogéologie). Univ. Bordeaux I; 169 p.Google Scholar
Michelsen, O.B., 1957. Photometric determination of phosphorus as molybdovanadophosphoric acid. Analytical Chemistry 29, 6062.10.1021/ac60121a017CrossRefGoogle Scholar
Noffke, N., 1999. Erosional remnants and pockets evolving from biotic-physical interactions in a recent lower supratidal environment. Sedimentary Geology 123, 175181.10.1016/S0037-0738(98)00135-3CrossRefGoogle Scholar
Noffke, N., 2000. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France). Sedimentary Geology 136, 207215.CrossRefGoogle Scholar
Noffke, N., 2010. Geobiology Microbial Mats in Sandy Deposits from the Archean Era to Today. Springer, Heidelberg-Dordrecht-London-New York.Google Scholar
Noffke, N., Beukes, N, Bower, D., Hazen, R.M., Swift, D.J.P., 2008. An actualistic perspective into Archean worlds- (cyano-) bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology 6, 520.10.1111/j.1472-4669.2007.00118.xCrossRefGoogle ScholarPubMed
Noffke, N., Beukes, N.J., Hazen, R.M., 2006a. Microbially induced sedimentary structures in the 2.9 Ga old Brixton Formation, Witwatersrand Supergroup, South Africa. Precambrian Research 146, 3544.CrossRefGoogle Scholar
Noffke, N., Christian, D., Wacey, D., 2013. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology 13, 121.CrossRefGoogle ScholarPubMed
Noffke, N., Gerdes, G., Klenke, T., Krumbein, W.E., 1996. Microbially induced sedimentary structures-examples from modern sediments of siliciclastic tidal flats. Zentralblatt für Geologie und Paläontologie, Teil I, 1995, Heft 1–2, 307316.Google Scholar
Noffke, N., Gerdes, G., Klenke, T., Krumbein, W.E., 2001a. Microbially induced sedimentary structures -a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research 71, 649656.CrossRefGoogle Scholar
Noffke, N., Gerdes, G., Klenke, T., Krumbein, W.E., 2001b. Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within Recent and Pleistocene coastal facies zones (southern Tunisia). Facies, 44(1), 2330.10.1007/BF02668164CrossRefGoogle Scholar
Noffke, N., Hazen, R.M., Eriksson, K., Simpson, E., 2006b. A new window into early life: microbial mats in a siliciclastic early Archean tidal flat (3.2 Ga Moodies Group, South Africa). Geology 34, 253256.CrossRefGoogle Scholar
Noffke, N., Hazen, R., Nhleko, N., 2003. Earth's earliest microbial mats in a siliciclastic marine environment (Mozaan Group, 2.9 Ga, South Africa). Geology 31, 673676.10.1130/G19704.1CrossRefGoogle Scholar
Noftke, N., 1997. Mikrobiell induzierte Sedimentstrukturen in siliziklastischen Wattablagerungen. PhD thesis, University of Oldenburg, Oldenburg, Germany.Google Scholar
Oueslati, A., 1995. Les îles de la Tunisie : Publ. CERES, 368p.Google Scholar
Park, R.K., 1977. The preservation potential of some recent stromatolites. Sedimentology 24, 485506.10.1111/j.1365-3091.1977.tb00135.xCrossRefGoogle Scholar
Paskoff, R., Sanlaville, P., 1977. Les formations quaternaires de l'ile de Djerba (Tunisie): essai sur les lignes de ravage. C.R. Somm. Soc. Géologique, Fr., 4, 217219.Google Scholar
Perthuisot, J.P., 1975. La Sabkha El Melah de Zarzis : genèse et évolution d'un bassin paralique. Trav. Lab. Géologique, E.N.S., Paris, 9, 252p.Google Scholar
Porada, H., Bouougri, E., 2007. Wrinkle structures-a critical review; Earth-Science Reviews 81(3):199215.CrossRefGoogle Scholar
Porada, H., Bouougri, E., Ghergut, J., 2007. Hydraulic conditions and mat-related structures in tidal flats and coastal sabkhas. In: Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. & Catuneanu, O. (Eds.): Atlas of Microbial Mat Features preserved within the siliciclastic Rock Record: Atlases in Geoscience 2; Elsevier, Amsterdam, pp. 258265Google Scholar
Porada, H., Löffler, T., 2000. Microbial shrinkage cracks in siliciclastic rocks of the Neoproterozoic Nosib Group (Damara Supergroup) of central Namibia. Communications Geological Survey of Namibia 12, 6372.Google Scholar
Quevauviller, P., Thomas, O., Derbeken, A.V., 2006. Wastewater quality monitoring and treatment. John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.CrossRefGoogle Scholar
Reineck, H., 1979. Rezente und fossile Algenmatten und Wurzelhorizonte: Natur und Museum, v. 109, 290296.Google Scholar
Reineck, H.E., Gerdes, G., Claes, M., Dunaijtschik, K., Riege, H., Krumbein, W.E., 1990. Microbial modification of sedimentary surface structures. In: Heling, D. (Ed.), Sediments and Environmental Geochemistry. Springer-Verlag, Berlin, pp. 254276.CrossRefGoogle Scholar
Revsbech, N.P., Jorgensen, B.B., Blackburn, T.H., Cohen, Y., 1983. Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat 1. Limnology and Oceanography, 28, 10621074.CrossRefGoogle Scholar
Sammari, C., Koutitonsky, V.G., Moussa, M., 2006. Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia. Continental Shelf Research 26, 338350.CrossRefGoogle Scholar
Sarkar, S., Banerjee, S., Samanta, P., Jeevankumar, S., 2006. Microbial mat-induced sedimentary structures in siliciclastic sediments: examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, M.P., India. Journal of Earth System Science 115, 4960CrossRefGoogle Scholar
Schieber, J., 2004. Microbial mats in the siliciclastic rock record: a summary of the diagnostic features. In: Eriksson, P.G., Altermann, W, Nelson, D.R., Mueller, W.U., Catuneau, O (Eds.), The Precambrian Earth: Tempos and Events, Developments in Precambrian Geology 12, Elsevier, Amsterdam, pp. 663673.Google Scholar
Singh, I.B., Wunderlich, F., 1978. On the terms wrinkle marks (Runzelmarken), millimetre ripples, and mini ripples. Senckenbergiana Maritima 10, 7583.Google Scholar
Stanier, R., Bazine, G., 1977. Phototrophic prokaryotes: the cyanobacteria. Annual Review of Microbiology 31, 225274.CrossRefGoogle ScholarPubMed
Van Gemerden, H., 1993. Microbial mats: a joint venture. Marine Geology 113, 325.CrossRefGoogle Scholar
Villbrandt, M., 1992. Interactions of nitrogen fixation and photosynthesis in marine cyanobacterial mats (Mellum, southern North Sea). PhD thesis, University of Oldenburg, Oldenburg, Germany.CrossRefGoogle Scholar
Yakimenko, O., Khundzhua, D., Izosimov, A., Yuzhakov, V., Patsaeva, S., 2018. Source indicator of commercial humic products: UV-Vis and fluorescence proxies. Journal of Soils and Sediments ; 18, 12791291; Springer Berlin Heidelberg.CrossRefGoogle Scholar
Supplementary material: File

Lakhdar et al. supplementary material

Lakhdar et al. supplementary material 1

Download Lakhdar et al. supplementary material(File)
File 26.6 KB
Supplementary material: Image

Lakhdar et al. supplementary material

Lakhdar et al. supplementary material 2

Download Lakhdar et al. supplementary material(Image)
Image 7.8 MB
Supplementary material: Image

Lakhdar et al. supplementary material

Lakhdar et al. supplementary material 3

Download Lakhdar et al. supplementary material(Image)
Image 53.4 MB
Supplementary material: Image

Lakhdar et al. supplementary material

Lakhdar et al. supplementary material 4

Download Lakhdar et al. supplementary material(Image)
Image 10.8 MB