Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:44:08.258Z Has data issue: false hasContentIssue false

Neotropical vegetation response to rapid climate changes during the last glacial period: Palynological evidence from the Cariaco Basin

Published online by Cambridge University Press:  20 January 2017

Catalina González*
Affiliation:
Research Center Ocean Margins/Marum, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
Lydie M. Dupont
Affiliation:
Research Center Ocean Margins/Marum, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
Hermann Behling
Affiliation:
Department of Palynology and Climate Dynamics, Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Gerold Wefer
Affiliation:
Research Center Ocean Margins/Marum, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
*
*Corresponding author. Fax: +49 421 218 65505.E-mail addresses:catalina@uni-bremen.de (C. González), dupont@uni-bremen.de (L.M. Dupont), Hermann.Behling@bio.uni-goettingen.de (H. Behling), gwefer@rcom-bremen.de (G. Wefer).

Abstract

We present new palynological information from the anoxic Cariaco Basin, off Venezuela, that provides insight into the response of northernmost South American vegetation to rapid climate changes between 68 and 28 ka, specifically during North Atlantic Heinrich events (HEs) and Dansgaard/Oeschger cycles. We defined three different vegetation modes: (1) an interstadial mode characterized by the highest pollen concentration and the maximum extension of semi-deciduous and evergreen forests; (2) a stadial mode characterized by increases of salt marshes, herbs, and montane forests; and (3) a Heinrich event mode characterized by the lowest pollen concentrations, abrupt increases of salt marshes, and decreased forest abundance. Similarly, indices of C4/C3 plants show increases during stadials with clear peaks during the onset of HEs, though grasslands did not become dominant during these periods. We alternatively propose that these expansions of C4 plants are associated with the expansion of coastal salt marshes. Our vegetation record suggests the prevalence of humid conditions during interstadials, dry and cold conditions during stadials, and dry and cold conditions together with changes in sea level during HEs. This new palynological evidence supports previous interpretations that main environmental changes in northernmost South America were driven by latitudinal displacements of the Intertropical Convergence Zone and sea-level changes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Clark, P.U., Keigwin, L.D., Webb, R.S., (1999). Making sense of millennial scale climate change. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of global climate change at millennial time scales. Geophysical Monograph vol. 112, American Geophysical Union, Washington., 385395.Google Scholar
Arz, H., Pätzold, J., Wefer, G., (1998). Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quaternary Research 50, 157166.Google Scholar
Aycard, M., (2004). Géochimie des sédiments du bassin de Cariaco (Venezuela) dans le contexte de la dernière transition glaciaire-interglaciaire: Processus de sédimentation et préservation de la matière organique. Thèse de Doctorat de l'universite Lille I.Google Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., (2001). Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698701.Google Scholar
Behling, H., Arz, H.W., Pätzold, J., Wefer, G., (2000). Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1. Quaternary Science Reviews 19, 981994.Google Scholar
Bond, G.C., Broecker, W.S., Johnsen, S., McManus, J.F., Labeyrie, L., Jouzel, J., Bonani, G., (1993). Correlation between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.Google Scholar
Boom, A., Marchant, R., Hooghiemstra, H., Sinninghe Damsté, J.S., (2002). CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2 . Palaeogeography, Palaeoclimatology, Palaeoecololgy 177, 151168.Google Scholar
Broecker, W.S., (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?. Science 300, 15191522.Google Scholar
Bush, M.B., Weng, M.B., (2007). Introducing a new (freeware) tool for palynology. Journal of Biogeography 34, 377380.Google Scholar
Burns, S.J., Fleitmann, D., Matter, A., Kramers, J., Al-Subbary, A.A., (2003). Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger Events 9 to 13. Science 301, 13651367.Google Scholar
Calleja, M., Van Campo, E., (1990). Plui pollinique le long d'un transect Atlantique Afrique-Bahamas. Comptes rendus de l'Académie des sciences. Série 2, 310, 13211326.Google Scholar
Cane, M.A., Clement, A.C., (1999). A role for the tropical Pacific coupled ocean–atmosphere system on Milankovitch and millennial timescales: Part II. Global impacts.. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of global climate change at millennial time scales. American Geophysical Union, Washington DC., 373383.Google Scholar
Chappell, J., (2002). Sea level changes forced ice breakouts in the last glacial cycle: New results from coral terraces. Quaternary Science Reviews 21, 12291240.Google Scholar
Clayton, T., Pearce, R.B., Peterson, L., (1999). Indirect climatic control of the clay mineral composition of Quaternary sediments from the Cariaco Basin, northern Venezuela (ODP site 1002). Marine Geology 161, 191206.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Bush, M.B., (2000). Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypothesis. Quaternary Science Reviews 19, 141169.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Patiño, J.E.M., (1999). Manual e atlas palinologico da Amazonia [Amazon pollen manual and atlas]. Harwood Academic Publishers, Amsterdam., .Google Scholar
Conde, J.E., Alarcón, C., (1993). Mangroves of Venezuela. Lacerda, L.D., Conservation and sustainable utilization of mangrove-forests in the Latin American and African Regions: Part I. Latin America. Mangrove Ecosystems Technical Reports Series vol. 2, The International Society for Mangrove Ecosystems (LSME) /The International Tropical Timber Organization, Okinawa, Japan., 211243.Google Scholar
.Cruise Report: MD 132-P.I.C.A.S.S.O. Images XI, Fortaleza-Baltimore-Brest, Mai Juin Institut Polaire Francais Paul Emile Victor.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
De Freitas, H.A., Pessenda, L.C.R., Aravena, R., Gouveia, S.E.M., De Souza Ribeiro, A., Boulet, R., (2001). Late Quaternary vegetation dynamics in the southern Amazon Basin inferred from carbon isotopes in soil organic matter. Quaternary Research 55, 3946.Google Scholar
Dupont, L.M., (1999). Pollen and spores in marine sediments from the East Atlantic: A view from the ocean into the African continent. Fischer, G., Wefer, G., Use of proxies in paleoceanography: Examples from the South Atlantic. Springer, Berlin., 523546.Google Scholar
Fajardo, L., González, V., Nassar, J.M., Lacabana, P., Portillo, C.A., Carrasquel, F., Rodríguez, J.P, (2005). Tropical dry forests of Venezuela: Characterization and current conservation status. Biotropica 37, 531546.Google Scholar
Gentry, A., (1993). A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru). Conservation International/University of Chicago Press, Washington DC., .Google Scholar
González, C., Dupont, L.M., Mertens, K., Wefer, G., in preparation. Reconstructing the history of marine productivity of the Cariaco Basin during Marine Isotope Stages 3 and 4 using organic-walled dinoflagellate cysts.Google Scholar
Grimm, E.C., Jacobson, G.L. Jr., Watts, W.A., Hansen, B.C.S., Maasch, K.A., (1993). 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science 261, 198200.Google Scholar
Haug, G., Hughen, K., Sigman, D., Peterson, L., Röhl, U., (2001). Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Hemming, S., (2004). Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their Global Climate imprint. Review of Geophysics 42, 143.Google Scholar
Herbert, T.D., Schuffert, J.D., (2000). Alkenone unsaturation estimates of sea-surface temperatures at site 1002 over a full glacial cycle. Leckie, R.M., Sigurdsson, H., Acton, G.D., Draper, G., Proceedings of the Ocean Drilling Program, Scientific Results 165, 239247.Google Scholar
Herrera, L.F., Urrego, L.E., (1996). Atlas de pollen de plantas útiles y cultivadas de la Amazonía colombiana. Estudios en la Amazonía Colombiana, tomo XI. Tropenbos/Fundación Erigaie.Google Scholar
Hooghiemstra, H., Van der Hammen, T., (1998). Neogene and Quaternary development of the neotropical rain forest: The refugia hypothesis, and a literature review. Earth-Science Reviews 44, 147183.Google Scholar
Hooghiemstra, H., Lézine, A.-M., Leroy, S.A.G., Dupont, L., Marret, F., (2006). Late Quaternary palynology in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW African setting. Quaternary International 148, 2944.Google Scholar
Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., Brenner, M., Moreland, M., Freeman, K.H., (2001). Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science 293, 16471651.Google Scholar
Huber, O., Alarcón, C., (1988). Mapa de Vegetacion de Venezuela. República de Venezuela, Ministerio del Ambiente y de los Recursos Naturales Renovables, Caracas, Venezuela.Google Scholar
Huber, O., Duno, R., Riina, R., Stauffer, F., Pappaterra, L., Jiménez, A., Llamozas, S., Orsini, G., (1998). Estado actual del conocimiento de la Flora en Venezuela. Documentos Técnicos de la Estrategia Nacional de Biodiversidad Biológica. No. 1. Ministerio del Ambiente y de los Recursos Naturales (MARN). Ediciones Tamandúa, Caracas.Google Scholar
Hughen, K., Overpeck, J.T., Peterson, L.C., Tumbore, S., (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 5154.Google Scholar
Hughen, K., Eglinton, T., Xu, L., Makou, M., (2004a). Abrupt tropical vegetation response to rapid climate changes. Science 304, 19551959.Google Scholar
Hughen, K., Lehman, S., Southon, J., Overpeck, J., Marchal, O., Herring, C., Turnbull, J., (2004b). 14C Activity and global carbon cycle changes over the past 50,000 years. Science 303, 202207.Google Scholar
Jennerjahn, T.C., Ittekkot, V., Arz, H.W., Behling, H., Pätzold, J., Wefer, G., (2004). Asynchronous terrestrial and marine signals of climate change during Heinrich events. Science 306, 22362239.Google Scholar
Jullien, E., Grousset, F., Malaizé, B., Duprat, J., Sanchez-Goni, M.F., Eynaud, F., Charlier, K., Schneider, R., Bory, A., Bout, V., Flores, J.A., (2007). Low-latitude "dusty events" vs. high-latitude "icy Heinrich events". Quaternary Research 68, 379386.Google Scholar
Kastner, T.P., Goñi, M.A., (2003). Constancy in the vegetation of the Amazon Basin during the late Pleistocene: Evidence from the organic matter composition of Amazon deep sea fan sediments. Geology 31, 291294.Google Scholar
Kovach, W.L, (1998). MVSP: A multivariate statistical package for Windows, ver 3.1. Computing Services, Pentraeth, Wales, UK., .Google Scholar
Leuschner, D.C., Sirocko, F., (2000). The low-latitude monsoon climate during Dansgaard–Oeschger cycles and Heinrich events. Quaternary Science Reviews 19, 243254.Google Scholar
Lyons, T.W., Werne, J.P., Hollander, D.J., Murray, R.W., (2003). Contrasting sulfur geochemistry and Fe/Al and Mo/Al rations across the last oxic-anoxic transition on the Cariaco Basin, Venezuela. Chemical Geology 195, 131157.Google Scholar
Marchant, R., Almeida, L., Behling, H., Berrío, J.C., Bush, M., Cleef, A., Duivenvoorden, J., Kappelle, M., De Oliveira, P., Teixeira de Oliveira-Filho, A., Lozano-Garcia, S., Hooghiemstra, H., Ledru, M.-P., Ludlow-Wiechers, B., Markgraf, V., Mancini, V., Paez, M., Prieto, A., Rangel, O., Salgado-Labouriau, M.-L., (2002). Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Review of Palaeobotany and Palynology 121, 175.Google Scholar
Matteucci, S., (1987). The vegetation of Falcón State, Venezuela. Vegetatio 70, 6791.CrossRefGoogle Scholar
McIntyre, A., Molfino, B., (1996). Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science 274, 18671870.Google Scholar
Medina, E., Cram, W.J., Lee, H.S., Lüttge, U., Popp, M., Smith, J.A., Diaz, M., (1989). Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela: I. Site description and plant communities. New Phytologist 111, 233243.CrossRefGoogle ScholarPubMed
Meier, W., (1998). Flora und Vegetation des Avila-National Parks (Venezuela. Küstenkordillere), unter besonderer Berücksichtigung der Nebelwaldstufe. Dissertationes Botanicae 296, Cramer-Borntraeger, Berlin/Stuttgart.Google Scholar
Muller-Karger, F., Varela, R., Thunell, R., Astor, Y., Zhang, H., Luerssen, R., Hu, Ch., (2004). Processes of coastal upwelling and carbon flux in the Cariaco Basin. Deep-Sea Research II, 927943.Google Scholar
Oeschger, H.E.A., (1984). Late glacial climate history from ice cores. Hansen, J.E., Takahashi, T., Climate processes and climate sensitivity. Geophysical Monograph Series American Geophysical Union, Washington DC., 299306.Google Scholar
Palacios Chávez, R., Ludlow-Wiechers, B., Villanueva, R., (1991). Flora palinológica de la reserve de la biosfera de Sian Ka´an, Quintana Roo. Centro de Investigaciones de Quintana Roo, México., .Google Scholar
Passier, H.F., Middelburg, J.J., Van Os, B.J.H., De Lange, G.J., (1996). Diagenetic pyritisation under eastern Mediterranean sapropels caused by downward sulphide diffusion. Geochimica et Cosmochimica Acta 60, 751763.Google Scholar
Peterson, L., Haug, G., Hughen, K., Röhl, U., (2000a). Rapid changes in the hydrologic cycle of the tropical Atlantic during the last Glacial. Science 290, 19471951.Google Scholar
Peterson, L.C., Haug, G.H., Murray, R.W., Yarincik, K.M., King, J.W., Bralower, T.J., Kameo, K., Rutherford, S.D., Pearce, R.B., (2000b). Late Quaternary stratigraphy and sedimentation at site 1002, Cariaco Basin (Venezuela). Leckie, R.M., Sigurdsson, H., Acton, G.D., Draper, G., Proceedings of the Ocean Drilling Program. Scientific Results 165, 8599.Google Scholar
Peterson, L., Haug, G., (2006). Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeography, Palaeoclimatology, Palaeoecology 234, 97113.Google Scholar
Piper, D.Z., Dean, W.E., (2002). Trace element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: A history of the local hydrography and global climate, 20 ka to the present. U.S. Geological Survey Professional paper 1670.CrossRefGoogle Scholar
Polissar, P.J., Abbott, M.B., Wolfe, A.P., Bezada, M., Rull, V., Bradley, R.S., (2006). Solar modulation of Little Ice Age climate in the tropical Andes. PNAS 103, 89378942.Google Scholar
Prange, M., Lohmann, G., Romanova, V., Butzin, M., (2004). Modelling tempo-spatial signatures of Heinrich events: Influence of the climatic background state. Quaternary Science Reviews 23, 521527.Google Scholar
Prospero, J.M., Lamb, J.P., (2003). African droughts and dust transport to the Caribbean: Climate change and implications. Science 302, 10241027.Google Scholar
Rahmstorf, S., (2002). Ocean circulation and climate during the past 120,000 years. Nature 419, 207214.Google Scholar
Rashid, H., Hesse, R., Piper, D.J.W., (2003). Evidence for an additional Heinrich event between H5 and H6 in the Labrador Sea. Paleoceanography 18, 1077.Google Scholar
Roubik, D., Moreno, J., (1991). Pollen and spores of Barro Colorado Island. Missouri Botanical Garden, Monographs in Systematic Botany 36, (United States of America).Google Scholar
Rühlemann, C., Mulitza, S., Müller, P.J., Wefer, G., Zahn, R., (1999). Warming of the tropical Atlantic Ocean and slowdown of the thermohaline circulation during the last deglaciation. Nature 402, 511514.CrossRefGoogle Scholar
Rull, V., (2007). Holocene global warming and the origin of the neotropical Gran Sabana in the Venezuelan Guayana. Journal of Biogeography 34, 279288.CrossRefGoogle Scholar
Salgado-Labouriau, M.L., (1997). Late Quaternary paleoclimate in the savannas of South America. Journal of Quaternary Science 12, 371379.Google Scholar
Sangster, A.G., Dale, H.M., (1964). Pollen grains preservation of underrepresented species in fossil spectra. Canadian Journal of Botany 42, 437449.Google Scholar
Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, Ch., Melschner, D., Schmelzer, I., Smeed, D.A., (2003). Sea-level fluctuations during the last glacial cycle. Nature 423, 853858.Google Scholar
Stott, L., Poulsen, C., Lund, S., Thunell, R., (2002). Super ENSO and global climate oscillations at millennial time scales. Science 297, 222226.Google Scholar
Veneklaas, E.J., Fajardo, A., Obregón, S., Lozano, J., (2005). Gallery forest types and their environmental correlates in a Colombian savanna landscape. Echography 28, 236252.Google Scholar
Vidal, L., Shneider, R.R., Marchal, O., Bickert, T., Stocker, T.F., Wefer, G., (1999). Link between the north and south Atlantic during the Heinrich events of the last glacial period. Climate Dynamics 15, 909919.Google Scholar
Vink, A., Rühlemann, C., Zonneveld, K.A.F., Mulitza, S., Hüls, M., Willems, H., (2001). Shifts in the position of the North Equatorial Current and rapid productivity changes in the western Tropical Atlantic during the last glacial. Paleoceanography 16, 112.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Dorale, J.A., (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.CrossRefGoogle ScholarPubMed
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., Shen, C.-C., (2004). Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740743.CrossRefGoogle ScholarPubMed
Yarincik, K.M, Murray, R.W., (2000). Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578.000 years: Results from Al/Ti and K/Al. Paleoceanography 15, 210228.Google Scholar
Yuan, D., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang, M., Qiung, J., Lin, Y., Wang, Y., Wu, J., Dorale, J.A., Cai, Y., (2004). Timing, duration, and transitions of the last interglacial monsoon. Science 304, 575578.Google Scholar
Zhao, M., Beveridge, N.A.S., Shackleton, N.J., Sarnthein, M., Eglinton, G., (1995). Molecular stratigraphy of cores off northwest Africa: Sea surface temperature history over the last 80 ka. Paleoceanography 10, 661675.Google Scholar
Supplementary material: PDF

González et al. Supplementary Material

Supplementary Material

Download González et al. Supplementary Material(PDF)
PDF 112.6 KB