Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T20:06:38.217Z Has data issue: false hasContentIssue false

Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event

Published online by Cambridge University Press:  20 January 2017

P. González-Sampériz*
Affiliation:
Instituto Pirenaico de Ecología-CSIC, Avda. Montañana 1005, Apdo 202, 50080 Zaragoza, Spain
P. Utrilla
Affiliation:
Dpto. de Ciencias de la Antigüedad (Prehistoria), Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
C. Mazo
Affiliation:
Dpto. de Ciencias de la Antigüedad (Prehistoria), Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
B. Valero-Garcés
Affiliation:
Instituto Pirenaico de Ecología-CSIC, Avda. Montañana 1005, Apdo 202, 50080 Zaragoza, Spain
MC. Sopena
Affiliation:
Dpto. de Ciencias de la Antigüedad (Prehistoria), Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
M. Morellón
Affiliation:
Instituto Pirenaico de Ecología-CSIC, Avda. Montañana 1005, Apdo 202, 50080 Zaragoza, Spain
M. Sebastián
Affiliation:
Dpto. de Ciencias de la Antigüedad (Prehistoria), Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
A. Moreno
Affiliation:
Instituto Pirenaico de Ecología-CSIC, Avda. Montañana 1005, Apdo 202, 50080 Zaragoza, Spain
M. Martínez-Bea
Affiliation:
Dpto. de Ciencias de la Antigüedad (Prehistoria), Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
*
Corresponding author. Email Address:pgonzal@ipe.csic.es

Abstract

The Central Ebro River Basin (NE Spain) is the most northern area of truly semi-arid Mediterranean climate in Europe and prehistoric human occupation there has been strongly influenced by this extreme environmental condition. Modern climate conditions single out this region due to the harsh environment, characterised by the highest absolute summer temperatures of the Ebro River Basin. The Bajo Aragón region (SE Ebro River Basin) was intensively populated during the Early Holocene (9400–8200 cal yr BP) but the settlements were abandoned abruptly at around 8200 cal yr BP. We propose that this “archaeological silence” was caused by the regional impact of the global abrupt 8.2 ka cold event. Available regional paleoclimate archives demonstrate the existence of an aridity crisis then that interrupted the humid Early Holocene. That environmental crisis would have forced hunter-gatherer groups from the Bajo Aragón to migrate to regions with more favourable conditions (i.e. more humid mountainous areas) and only return in the Neolithic. Coherently, archaeological sites persist during this crisis in the nearby Iberian Range (Maestrazgo) and the North Ebro River area (Pre-Pyrenean mountains and along the northwestern Ebro Basin).

Type
Short paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., and Agustsdottir, A.M. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternaty Science Reviews 24, (2005). 11231149.CrossRefGoogle Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, (1997). 483486.2.3.CO;2>CrossRefGoogle Scholar
Baldini, J.U.L., McDermott, F., and Fairchild, I.J. Structure of the 8200-year cold event revealed by a speleothem trace element record. Science 296, (2002). 22032206.CrossRefGoogle ScholarPubMed
Barandiarán, I., and Cava, A. A propósito de unas fechas del Bajo Aragón: reflexiones sobre el Mesolítico y el Neolítico en la Cuenca del Ebro. SPAL 9, (2000). 293326.CrossRefGoogle Scholar
Bauer, E., Ganopolski, A., and Montoya, M. Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz. Paleoceanography 19, (2004). doi:10.1029/2004PA001030 CrossRefGoogle Scholar
Benito, G., Sopeña, A., Sánchez-Moya, Y., Machado, M.J., and Pérez-González, A. Palaeoflood record of the Tagus River (central Spain) during the Late Pleistocene and Holocene. Quaternary Science Reviews 22, (2003). 17371756.CrossRefGoogle Scholar
Bernabeu, J., Pérez Ripoll, M., and Martinez-Valle, R. Huesos, neolitización y contextos arqueológicos aparentes. Saguntum Extra 2, (1999). 6981.Google Scholar
Blanco, E., Casado, M., Costa, M., Escribano, R., García Antón, M., Génova, M., Gómez, A., Moreno, J., Morla, C., Regato, P., and Sainz Ollero, H. Los bosques ibéricos. Una interpretación geobotánica. Planeta Ed.. Barcelona (1997). 572 Google Scholar
Capel Molina, J.J. Los climas de España. Oikos-Tau editions. Barcelona (1981). 429 Google Scholar
Carrión, J.S. Patterns and processes of late quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews 21, (2002). 20472066.CrossRefGoogle Scholar
Carrión, J.S., Fuentes, N., González-Sampériz, P., Sánchez Quirante, L., Finlaysson, C., Fernández, S., and Andrade, A. Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quaternary Science Reviews 26, (2007). 14551475.CrossRefGoogle Scholar
Cullen, H.M., deMenocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T., and Sirocko, F. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28, 4 (2000). 379382.2.0.CO;2>CrossRefGoogle Scholar
Davis, B.A.S., (1994). Palaeolimnology and Holocene environmental change from endorheic lakes in the Ebro Basin, north-east Spain. Ph. D. Thesis, University of Newcastle upon Tyne, 317 pp.Google Scholar
Davis, B.A.S., and Stevenson, A.C. The 8.2 ka event and the Early–Mid Holocene forest, fires and flooding in the Central Ebro Desert, NE Spain. Quaternary Science Reviews 26, (2007). 16951712.CrossRefGoogle Scholar
de Menocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M. Coherent high-and-low-latitude climate variability during the Holocene Warm Period. Science 288, (2000). 21982202.CrossRefGoogle ScholarPubMed
Fernández-López de Pablo, J. Contribución al conocimiento de la secuencia arqueológica y el habitat del Holoceno Inicial en el Maestrazgo. Saguntum 38, (2006). 2347.Google Scholar
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F.J., Flores, J.A., Grimalt, J.O., Hodell, D.A., and Curtis, J.H. Holocene climate variability in the western Mediterranean region from a deepwater sediment record. Paleoceanography 22, (2007). PA2209 doi:10.1029/2006PA001307 CrossRefGoogle Scholar
García-Vera, M.A. Hidrogeología de zonas endorreicas en climas semiáridos. Aplicación a Los Monegros (Zaragoza y Huesca). Diputación General de Aragón. Zaragoza (1996). 297 Google Scholar
Gasse, F., and Van Campo, E. Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth and Planetary Science Letters 126, (1994). 435456.CrossRefGoogle Scholar
Giralt, S., Burjachs, F., Roca, J.R., and Julià, R. Late glacial to early Holocene environmental adjustment in the Mediterranean semi-arid zone of the Salines playa-lake (Alicante, Spain). Journal of Paleolimnology 21, (1999). 449460.CrossRefGoogle Scholar
González-Sampériz, P. Evolución paleoambiental del sector central de la cuenca del Ebro durante el Pleistoceno superior y Holoceno. Instituto Pirenaico de Ecología-CSIC. Zaragoza (2004). 210 Google Scholar
González-Sampériz, P. Análisis palinológico del yacimiento de Los Baños de Ariño (Teruel). Utrilla, P., and Rodanés, J.M. El yacimiento Arqueológico de Los Baños de Ariño. Monografías Arqueológicas. (2004). Zaragoza, 5962.Google Scholar
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Jalut, G., García-Ruiz, J.M., Martí-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T., and Dedoubat, J.J. Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quaternary Research 66, (2006). 3852.CrossRefGoogle Scholar
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Morellón, M., Navas, A., Machín, J., and Delgado-Huertas, A. Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Lateglacial: saline lake records. Palaeogeography, Palaeoclimatology, Palaeoecology 259, (2008). 157181.CrossRefGoogle Scholar
Grootes, P., and Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 103- to 105-year time resolution. Journal of Geophysical Research 102, (1997). 2645526470.CrossRefGoogle Scholar
Grosjean, M., Núñez, L., and Cartajena, I. Palaeoindian occupation of the Atacama Desert, northern Chile. Journal of Quaternary Science 20, (2005). 643653.CrossRefGoogle Scholar
Harrison, S.P., and Digerfeldt, G. European lakes as palaeohydrological and palaeoclimate indicators. Quaternary Science Reviews 12, (1993). 233248.CrossRefGoogle Scholar
Haug, G.H., Ganther, D., Peterson, L.C., Sigman, D.M., Hughen, Y.R., and Aeschlimann, B. Climate and the collapse of Maya civilization. Science 299, (2003). 17311735.CrossRefGoogle ScholarPubMed
Hoelzmann, P., Keding, B., Berke, H., Kröpelin, S., and Kruse, H.J. Environmental change and archaeology: lake evolution and human occupation in the Eastern Sahara during the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 169, (2001). 193217.CrossRefGoogle Scholar
Longares, L.A. El paisaje vegetal en el entorno de la Reserva Ornitológica “El Planerón” (belchite, Zaragoza). Consejo de Protección de la Naturaleza-SEO/Birdlife. Serie Investigación 7. Zaragoza (1997). 195 Google Scholar
López-Martín, F., Cabrera, M., and Cuadrat, J.M. Atlas Climático de Aragón. Departamento de Medio Ambiente. Gobierno de Aragón. Zaragoza (2007). 222 Google Scholar
López-García, P. Análisis polínicos de cuatro yacimientos arqueológicos situados en el Bajo Aragón. Aragón/Litoral Mediterráneo. Intercambios culturales durante la Prehistoria. Institución Fernando el Católico. (1992). Universidad de Zaragoza, 235242.Google Scholar
Macklin, M.G., Benito, G., Gregory, K.J., Johnstone, E., Lewin, J., Michczynska, D.J., Soja, R., Starkel, L., and Thorndycraft, V.R. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66, (2006). 145154.CrossRefGoogle Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., Kreveld, S.V., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., and Steig, E.J. Holocene climate variability. Quaternary Research 62, (2004). 243255.CrossRefGoogle Scholar
Meltzer, D.J. Human responses to Middle Holocene (Altithermal) climates on the North American Great Plains. Quaternary Research 52, (1999). 404416.CrossRefGoogle Scholar
Molero, J., and Blanché i Vergés, C. Las cubetas arreicas al sur de Bujaraloz (Valle del Ebro). Contribución a su estudio fitocenológico. Lazaroa 9, (1986). 277300.Google Scholar
Montes, L., Utrilla, P., and Mazo, C. El epipaleolítico macrolítico en Aragón en su contexto del valle del Ebro y Cataluña costera. Alday, A. Simposio trans-regional sobre el Mesolítico de la Cuenca del Ebro y Litoral Mediterráneo. Memorias de yacimientos alaveses 11, (2006). Vitoria, 189218.Google Scholar
Montserrat, J. Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: estudio palinológico. Monografías del Instituto Pirenaico de Ecología-CSIC. Zaragoza (1992). 147 Google Scholar
Morellón, M., Valero-Garces, B., Moreno, A., Gonzalez-Samperiz, P., Mata, P., Romero, O., Maestro, M., and Navas, A. Holocene palaeohydrology and climate variability in Northeastern Spain: the sedimentary record of Lake Estanya (Pre-Pyrenean range). Quaternary International 181, (2008). 1531.CrossRefGoogle Scholar
Núñez, L., Grosjean, M., and Cartajena, I. Human occupations and climate change in the Puna de Atacama, Chile. Science 298, (2002). 821824.CrossRefGoogle ScholarPubMed
Olaria, C., Gusi, F., and Gómez, J.L. Un enterramiento Meso-Neolítico en el Cingle del Mas Nou (Ares del Maestre, Castellón) del 7000B.P. en territorio de arte levantino. III Congreso de Neolítico de la Península Ibérica. Santander (2005). 615623.Google Scholar
Peñalba, C., (1989). Dynamique de la végétation tardiglaciare et holocène du centre-nord de l'Espagne d'après l'analyse pollinique. Université d'Aix-Marseille, . Tesis Doctoral., 190 pp.Google Scholar
Plá, S., and Catalan, J. Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Climate Dynamics 24, (2005). 263278.CrossRefGoogle Scholar
Ramil-Rego, P., Muñoz-Sobrino, C., Rodríguez-Guitán, L., and Gómez-Orellana, L. Differences in the vegetation of the North Iberian Peninsula during the last 16,000 years. Plant Ecology 138, (1998). 4162.CrossRefGoogle Scholar
Reed, J.M., Stevenson, T., and Juggins, S. A multi-proxy record of Holocene climatic change in southwestern Spain: the Laguna de Medina, Cádiz. The Holocene 11, (2001). 707719.CrossRefGoogle Scholar
Roca, J.R., and Julià, R. Late Glacial and Holocene climatic changes and desertification expansion based on biota content in the Salines sequence, Southeastern Spain. Geobios 30, (1997). 823830.CrossRefGoogle Scholar
Rohling, E.J., and Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8200 years ago. Nature 434, (2005). 975979.CrossRefGoogle Scholar
Sánchez-Goñi, M.F., and Hannon, G. High-altitude vegetational pattern on the Iberian Mountain Chain (north-central Spain) during the Holocene. Holocene 9, (1999). 3957.CrossRefGoogle Scholar
Stevenson, A. The Holocene forest history of the Montes Universales, Teruel, Spain. Holocene 10, (2000). 603610.CrossRefGoogle Scholar
Thorndycraft, V.R., and Benito, G. The Holocene fluvial chronology of Spain: evidence from a newly compiled radiocarbon database. Quaternary Science Reviews 25, (2006). 223234.CrossRefGoogle Scholar
Turney, C.S.M., and Brown, H. Catastrophic early Holocene sea level rise, human migration and the Neolithic transition in Europe. Quaternary Science Reviews 26, (2007). 20362041.CrossRefGoogle Scholar
Utrilla, P. Epipaleoliticos y Neolíticos en el Valle del Ebro. The Neolithic Landscapes of the Mediterranean. Saguntum Extra 5, (2002). 179208.Google Scholar
Utrilla, P. Arte rupestre en Aragón. 100 años después de Calapatá. Hernández, M., and Soler, J. Arte rupestre en la España mediterránea. (2005). Instituto Alicantino de Cultura Juan Gil-Albert. Diputación de Alicante, Spain, Alicante. 341378.Google Scholar
Utrilla, P., and Martinez-Bea, M. Arte levantino y territorio en la España mediterránea. Clío Arqueológica 20, (2006). 1752. (Universidade Federal de Pernambuco Recife, Brasil) Google Scholar
Utrilla, P., Cava, A., Alday, A., Baldellou, V., Barandiarán, I., Mazo, C., and Montes, L. Le passage du mésolithique au néolithique ancien dans le Bassin de l'Ebre (Espagne) d'après les datations C14. Préhistoire Européenne 12, (1998). 171194.Google Scholar
Valero-Garcés, B., González-Sampériz, P., Delgado-Huertas, A., Navas, A., Machín, J., and Kelts, K. Lateglacial and Late Holocene environmental vegetational change in Salada Mediana, central Ebro Basin, Spain. Quaternary International 73/74, (2000). 2946.CrossRefGoogle Scholar
Valero-Garcés, B.L., González-Sampériz, P., Navas, A., Machín, J., Delgado-Huertas, A., Peña-Monne, J.L., Sancho-Marcén, C., Stevenson, A., and Davis, B.A.S. Paleohydrological fluctutations and steppe vegetation during the last glacial maximum in the Central Ebro valley (N.E. Spain). Quaternary International 122, (2004). 4355.CrossRefGoogle Scholar
Van Geel, B., Buurman, J., and Waterbolk, H. Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, 6 (1996). 451460.3.0.CO;2-9>CrossRefGoogle Scholar
Weninger, B., and Jöris, O. Towards an absolute chronology at the middle to upper palaeolithic transition in western Eurasia: a New Greenland time-scale based on U/Th ages. Journal of Human Evolution 55, (2008). 772781.CrossRefGoogle Scholar
Weninger, B., Jöris, O., Danzeglocke, U., (2007). CalPal-2007. Cologne Radiocarbon Calibration and Palaeoclimate Research Package. http://www.calpal.de/.Google Scholar
Wiersma, A.P., and Renssen, H. Model-data comparison for the 8.2 ka B.P. event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quaternary Science Reviews 25, (2006). 6388.CrossRefGoogle Scholar