Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T05:12:52.344Z Has data issue: false hasContentIssue false

Aeolian influx and related environmental conditions on Gran Canaria during the early Pleistocene

Published online by Cambridge University Press:  15 August 2018

Inmaculada Menéndez*
Affiliation:
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Campus Tafira, 35017 Las Palmas de Gran Canaria, Spain
José Mangas
Affiliation:
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Campus Tafira, 35017 Las Palmas de Gran Canaria, Spain
Esperança Tauler
Affiliation:
Departamento de Mineralogia, Petrología y Geología Aplicada, Universitat de Barcelona, Martí i Franqués, 08028 Barcelona, Spain
Vidal Barrón
Affiliation:
Departamento de Agronomía, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
José Torrent
Affiliation:
Departamento de Agronomía, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
Juan F. Betancort
Affiliation:
Universidad Nacional de Educación a Distancia (UNED), Juan del Rosal, 14, 28040 Madrid, Spain
Ángelo Santana
Affiliation:
Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Rabanales, 14071 Córdoba, Spain
José Manuel Recio
Affiliation:
Departamento de Ecología (Geografía Física), Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
Luis A. Quevedo-González
Affiliation:
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Campus Tafira, 35017 Las Palmas de Gran Canaria, Spain
Ignacio Alonso
Affiliation:
Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Campus Tafira, 35017 Las Palmas de Gran Canaria, Spain
Jorge Méndez-Ramos
Affiliation:
Departamento de Física, Universidad de La Laguna, Campus San Cristobal de la Laguna, 38200 Tenerife, Spain
*
*Corresponding author at: Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Campus Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail address: inmaculada.menendez@ulpgc.es (I. Menéndez).

Abstract

The island of Gran Canaria is regularly affected by dust falls due to its proximity to the Saharan desert. Climatic oscillations may affect the Saharan dust input to the island. Geochemical, mineralogical, and textural analysis was performed on a well-developed and representative early Pleistocene paleosol to examine Saharan dust contribution to Gran Canaria. Significant and variable Saharan dust content was identified in addition to weathering products such as iron oxides and clay minerals. Variations in quartz and iron oxide concentrations in the paleosol likely reflect different Saharan dust input in more/less-contrasted rhexistasic/biostatic climatic conditions. Linking the quartz content in Canarian soils, the Ingenio paleosol, and two Canarian loess-like deposits to different ages from the Quaternary, we hypothesized that the dust input should be lower (about 33–38%) throughout the early to middle Pleistocene than during the late Quaternary. The Saharan dust input to the Gran Canaria profile in the Pleistocene persisted in spite of climatic variations.

Type
Thematic Set: Drylands
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arbogast, A.F., Packman, S.C., 2004. Middle-Holocene mobilization of aeolian sand in western upper Michigan and the potential relationship with climate and fire. The Holocene 14, 464471.Google Scholar
Balcells, R., Barrera, J.L., Gómez, J.A., Cueto, L.A., 1992. Mapa Geológico de España, Hoja de la Isla de Gran Canaria, Map 21-21/21-22. Instituto Tecnológico Geominero de España and Servicio de Publicaciones del Ministerio de Industria, Madrid.Google Scholar
Balsam, W.L., Ji, J., Chen, J., 2004. Climatic interpretation of the Luochuan and Lingtai loess section, China, based on changing iron oxide mineralogy. Earth and Planetary Science Letters 223, 335e348. http://dx.doi.org/10.1016/j.epsl.2004.04.023.Google Scholar
Barrón, V., Torrent, J., 2013. Iron, manganese and aluminum oxides and oxyhydroxides. In: Nieto, F., Livi, K.J.T., Oberti, R. (Eds.), European Mineralogical Union Notes in Mineralogy, Vol. 14. Minerals at the Nanoscale, Mineralogical Society of Great Britain and Ireland, pp. 297336. https://doi.org/10.1180/EMU-notes.14 Google Scholar
Bern, C.R., Yesavagea, T., Foleyb, N.K., 2017. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration. Journal of Geochemical Exploration 172, 2940.Google Scholar
Brown, D.J., Mc Sweeney, K., Helmke, P.A., 2004. Statistical, geochemical, and morphological analyses of stone line formation in Uganda. Geomorphology 62, 217237.Google Scholar
Campbell, M.C., Fisher, T.G., Goble, R.J., 2011. Terrestrial sensitivity to abrupt cooling recorded by aeolian activity in northwest Ohio, USA. Quaternary Research 75, 411416.Google Scholar
Carracedo, J.C., Pérez-Torrado, F.J., Ancochea, E., Meco, J., Hernán, F., Cubas, C.R., Casillas, R., Rodríguez-Badiola, E., Ahijado, A., 2002. Cenozoic Volcanism II: The Canary Islands. In: Gibsson, W., Moreno, T. (Eds.), The Geology of Spain. The Geological Society, London, pp. 439472.Google Scholar
Cattle, S.R., Mc Tainsh, G.H., Wagner, S., 2002. Aeolian dust contributions to soil of the Namoi Valley, northern NSW Australia. Catena 47, 245264.Google Scholar
Chamley, H., Coudé-Gaussen, G., Debrabant, P., Rognon, P., 1987. Contribution autochtone et allochtone à la sédimentation quaternaire de l'île de Fuerteventura (Canaries): altération ou apports éoliens? Bulletin de la Societé Géologique de France 5, 939952.Google Scholar
Chang, C., Li, F., Liu, C., Gao, J., Tong, H., Chen, M., 2016. Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils. Acta Geochimica 35, 329.Google Scholar
Cita, M.B., Pillans, B., 2010. Global stages, regional stages or no stages in the Plio/Pleistocene? Quaternary International 219, 615.Google Scholar
Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides Structure, Properties, Reactions, Occurrences and Uses. 2nd Edition, Wiley-VCH, Weinheim.Google Scholar
Criado, C., Dorta, P., 2003. An unusual ‘‘blood rain’’ over the the Canary Islands (Spain):the storm of January 1999. Journal of Arid Environments 55, 765783.Google Scholar
Dorta, P., 1999. Las invasiones de aire sahariano en Canarias [The advections of Saharan air in the Canary Islands]. Consejería de Agricultura, Pesca y Alimentación del Gobierno de Canarias y Caja Rural de Tenerife, Santa Cruz de Tenerife.Google Scholar
Dupont, L., Leroy, S., 1995. Steps toward drier climatic conditions in Northwestern Africa during the Upper Pliocene. In: Vrba, E., Denton, G., Burckle, L., Partridge, T. (Eds.), Paleoclimate and Evolution. Yale University Press, New Haven, pp. 289298.Google Scholar
Ehrmann, W., Schmiedl, G., Beuscher, S., Krüger, S., 2017. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes. PLoS ONE 12(1), e0170989. http://dx.doi.org/10.1371/journal.pone.0170989.Google Scholar
Engelstaedter, S., Tegen, I., Washington, R., 2006. North African dust emissions and transport. Earth-Science Reviews 79, 73100.Google Scholar
Erhart, H., 1955. “Biostasie” et “rhexistasie”: esquisse d’une théorie sur le rôle de la pédogenèse en tant que phénomène géologique. Comptes Rendus Académie des Sciences 241, 12181220.Google Scholar
Faust, D., Yurena, Y., Willkommen, T., Roettig, C., Richter, D., Richter, D., v. Suchodoletz, H., Zöller, L., 2015. A contribution to the understanding of late Pleistocene dune sand-paleosol-sequences in Fuerteventura (Canary Islands). Geomorphology 246, 290304.Google Scholar
Fedoroff, N., Courty, M.A., Guo, Z.T., 2010. Palaeosols and relict soils. In: Stoops, G., Marcelino, V., Mees, F. (Eds), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 623662.Google Scholar
Forman, S.L., Oglesby, R., Webb, R.S., 2001. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climate links. Global and Planetary Change 29, 129.Google Scholar
Gibbard, P.L., Head, M.J., 2009. IUGS ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. Quaternaire 20, 411412.Google Scholar
Goudie, A., 2013. Encyclopedia of Geomorphology. Taylor and Francis, https://books.google.es/books?id=JJHyXx42OQEC.Google Scholar
Goudie, A.S., Middleton, N.J., 2001. Saharan dust storms: nature and consequences. Earth-Science Reviews 56, 179204.Google Scholar
Guillou, H., Perez Torrado, F.J., Hansen Machin, A.R, Carracedo, J.C., Gimeno, D., 2004. The Plio–Quaternary volcanic evolution of Gran Canaria based on new K–Ar ages and magnetostratigraphy. Journal of Volcanology and Geothermal Research 135, 221246.Google Scholar
Hallam, A., Grose, J.A., Ruffell, A.H., 1991. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeography, Palaeoclimatology, Palaeoecology 81, 173187.Google Scholar
Hamann, Y., Ehrmann, W., Schmiedl, G., Krüger, S., Stuut, J.-B., Kuhnt, T., 2008. Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments. Marine Geology 248, 97114.Google Scholar
Hansen, E.C., Fisher, T.G., Arbogast, A.F., Bateman, M.D., 2010. Geomorphic history of low-perched, transgressive dune complexes along the southeastern shore of Lake Michigan. Aeolian Research 1, 111127.Google Scholar
Henderiks, J., Freudenthal, T., Meggers, H., Navec, S., Abrantesc, F., Bollmanna, J., Thierstein, H.R., 2002. Glacial-interglacial variability of particle accumulation in the Canary Basin: a time-slice approach. Deep-Sea Research Part II: Topical Studies in Oceanography 49, 36753705.Google Scholar
Hooghiemstra, H., Lézine, A.-M., Leroy, S.A.G., Dupont, L., Marret, F., 2006. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quaternary International 148, 2944.Google Scholar
Hong, H., Gu, Y., Li, R., Zhang, K., Li, Z., 2010. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China. Journal of Quaternary Science 25, 662674.Google Scholar
Hong, H., Gu, Y., Yin, K., Wang, C., Li, Z., 2013. Clay record of climate change since themid-Pleistocene in Jiujiang, south China. Boreas 42, 173183.Google Scholar
Ji, J., Balsam, W., Chen, J., 2001. Mineralogic and climatic interpretations of the Luochuan loess section (China) based on diffuse reflectance spectrophotometry. Quaternary Research 56, 2330.Google Scholar
Johnson, D.L., Domier, J.E.J., Johnson, D.N., 2005. Animating the biodynamics of soil thickness using process vector analysis: a dynamic denudation approach to soil formation. Geomorphology 67, 2346.Google Scholar
Kettler, T.A., Doran, J.W., Gilbert, T.L., 2001. Simplified Method for Soil Particle-Size Determination to Accompany Soil-Quality Analyses. Publications from USDA-ARS / UNL Faculty, 305. http://digitalcommons.unl.edu/usdaarsfacpub/305.Google Scholar
Kukla, G., Han, Z., 1989. Loess stratigraphy in Central China. Palaeogeography, Palaeoclimate, Palaeoecology 72, 200225.Google Scholar
Küster, Y., Hetzel, R., Krbetschek, M., Tao, M.X., 2006. Holocene loess sedimentation along the Qilian Shan (China): significance for understanding the processes and timing of loess deposition. Quaternary Science Reviews 25, 114125.Google Scholar
Lafon, S., Rajot, J.L., Alfaro, S.C., Gaudichet, A., 2004. Quantification of iron oxides in desert aerosol. Atmospheric Environment 38, 12111218.Google Scholar
Lázaro, F.J., Gutiérrez, L., Barrón, V., Gelado, M.D., 2008. The speciation of iron in desert dust collected in Gran Canaria (Canary Islands): combined chemical, magnetic and optical analysis. Atmospheric Environment 42, 89878996.Google Scholar
Lehmkuhl, F., Schulte, P., Zhao, H., Hülle, D., Protze, J., Stauch, G., 2014. Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau. Catena 117, 2333.Google Scholar
Leroy, S.A.G., 2007. Progress in palynology of the Gelasian–Calabrian Stagesin Europe: ten messages. Revue de Micropaléontologie 50, 293308.Google Scholar
Leroy, S.A.G., Dupont, L.M., 1997. Marine palynology of the ODP 658 (N-W Africa) and its contribution to the stratigraphy of Late Pliocene. Geobios 30, 351359.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. http://dx.doi.org/10.1029/2004PA001071.Google Scholar
Liu, X.-J., XiaoG., E, C. G., E, C., Li, X., Lai, Z., Yu, L., Wang, Z., 2017. Accumulation and erosion of aeolian sediments in the northeastern Qinghai-Tibetan Plateau and implications for provenance to the Chinese Loess Plateau. Journal of Asian Earth Sciences 135, 166174.Google Scholar
Long, X., Ji, J., Balsam, W., 2011. Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China: spectral and magnetic measurements. Journal of Geophysical Research Earth Surface 116, 115.Google Scholar
Long, X., Ji, J., Barrón, V., Torrent, J., 2016. Climatic thresholds for pedogenic iron oxides under aerobic conditions: processes and their significance in paleoclimate reconstruction. Quaternary Science Reviews 150, 264277.Google Scholar
Loope, W.L., Arbogast, A.F., 2000. Dominance of an ~150-year cycle of sand-supply change in Late Holocene dune-building along the eastern shore of Lake Michigan. Quaternary Research 54, 414422.Google Scholar
Lu, H.Y., Zhao, C.F., Mason, J., Yi, S.W., Zhao, H., Zhou, Y.L., Ji, J.F., Swinehart, J., Wang, C.M., 2010. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (north eastern Qinghai-Tibetan Plateau) and possible forcing mechanisms. The Holocene 21, 297304.Google Scholar
Mangas, J., Pérez-Torrado, J.F., Gimeno, D., Hansen, A., Paterne, M., Guillou, H., 2002. Caracterización de los materiales volcánicos asociados a las erupciones holocenas de la Caldera de Pinos de Galdar y edificios volcánicos adyacentes (Gran Canaria). Geogaceta 32, 4952.Google Scholar
Mason, J.A., Joeckel, R.M., Bettis, E.A. III, 2007. Middle to Late Pleistocene loess record in eastern Nebraska, USA, and implications for the unique nature of Oxygen Isotope Stage 2. Quaternary Science Reviews 26, 773792.Google Scholar
Mbagwu, J.S.C., 2008. From Paradox to Reality: Unfolding the Discipline of Soil Physics in Soil Science. University of Nigeria, Nsukka.Google Scholar
McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Papers 284, 2140.Google Scholar
Meco, J., Guillou, H., Carracedo, J.C., Lomoschitz, A., Ramos, A.-J.G., Rodríguez-Yánez, J.J., 2002. The maximum warmings of the Pleistocene world climate recorded in the Canary Islands. Palaeogeography, Palaeoclimate, Palaeoecology 185, 197210.Google Scholar
Meco, J., Koppers, A.A.P., Miggins, D.P., Lomoschitz, A., Betancort, J.F., 2015. The Canary record of the evolution of the North Atlantic Pliocene: new 40Ar/39Ar ages and some notable palaeontological evidence. Palaeogeograpdy, Palaeoclimate, Palaeoecology 435, 5369.Google Scholar
Mehra, O.P., Jackson, M.L., 1958. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals 7, 317327.Google Scholar
Menéndez, I., Cabrera, L., Sánchez-Pérez, I., Mangas, J., Alonso, I., 2009a. Characterisation of two fluvio-lacustrine loessoid deposits on the island of Gran Canaria, The Canary Islands. Quaternary International 196, 3643.Google Scholar
Menéndez, I., Derbyshire, E., Carrillo, T., Caballero, E., Engelbrecht, J.P., Romero, L.E., Mayer, P.L., Rodríguez de Castro, F., Mangas, J., 2017. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold values in the northern sector of Gran Canaria, Spain. International Journal of Environmental Health Research 27, 144160.Google Scholar
Menéndez, I., Derbyshire, E., Engelbrecht, J., von Suchodoletz, H., Zöller, L., Dorta, P., Carillo, T., Rodríguez de Castro, F., 2009b. Saharan dust and the aerosols on the Canary Islands: past and present. In: Cheng, M., Liu, W. (Eds.), Airborne Particulates. Novapublishers, Hauppauge, NY, pp. 3980.Google Scholar
Menéndez, I., Díaz-Hernandez, J.L., Mangas, J., Alonso, I., Sánchez-Soto, P.J., 2007. Airborne dust accumulation and soil development in the north-east sector of Gran Canaria (Canary Island, Spain). Journal of Arid Environment 71, 5781.Google Scholar
Morales, J., Rodríguez, A., Alberto, V., Machado, C., Criado, C., 2009. The impact of human activities on the natural environment of the Canary Islands (Spain) during the pre-Hispanic stage (3rd–2nd Century BC to 15th Century AD): an overview. Environmental Archaeology 14, 2736.Google Scholar
Morrás, H., Moretti, L., Píccolo, G., Zech, W., 2006. Stone lines and weathering profiles of ferralitic soils in Northeastern Argentina. In Proceedings of the workshop for Alumni of the M.Sc. programmes in Soil Science, Eremology and Physical Land Resource. Gent University, Gent, Belgium, pp. 269–279.Google Scholar
Muhs, D.R., Budahn, J. R., Prospero, J. M., Carey, S. N., 2007. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. Journal of Geophysical Research 112, F02009. http://dx.doi.org/10.1029/2005JF000445.Google Scholar
Muhs, D.R., Bush, C.A., Stewart, K.C., Rowland, T.R., 1990. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands. Quaternary Research 33, 157177.Google Scholar
Neff, J.C., Ballantyne, A.P., Farmer, G.L., Mahowald, N., Conroy, J.L., Landry, C.C., Overpeck, J.T., Painter, T.H., Lawrence, C.R., Reynolds, R.L., 2008. Increasing eolian dust deposition in the western United States linked to human activity. Nature Geosciences 1. http://dx.doi.org/10.1038/ngeo 2008.Google Scholar
Nesbitt, H.W., Young, G.M., 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97, 129147.Google Scholar
Nettleton, W.D., Olson, C.G., Wysocki, D.A., 2000. Palaeosol classification: problems and solutions. Catena 41, 6192.Google Scholar
Offer, Z.Y., Zaady, E., Shachak, M., 1998. Aeolian particle input to the soil surface at the northern limit of the Negev desert. Arid Soil Research and Rehabilitation 12, 5562.Google Scholar
Olson, C.G., Nettleton, W.D., 1998. Palaeosols and the effects of alteration. Quaternary International 51/52, 185194.Google Scholar
Pokras, E.M., 1989. Pliocene history of South Saharan/Sahelian aridity: record of freshwater diatoms (Genus Melosira) and opal phytoliths, ODP sites 662 and 664. In: Leinen, M., Sarnthein, M. (Eds.), Palaeoclimatology and Palaeometeorology: Modern and Past Patterns of Global Atmospheric Trans-port. Kluwer Academic Publishing, Dordrecht, pp. 795804.Google Scholar
Price, J.R., Velbel, M.A., 2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology 202, 397416.Google Scholar
Prospero, J.M., 1996. Dust transport over the North Atlantic Ocean and Mediterranean: an overview. In: Guerzoni S., Chester R. (Eds.), The Impact of Desert Dust Across the Mediterranean. Kluwer Academic Publishing, Dordrecht, pp. 133151.Google Scholar
Prospero, J.M., Lamb, P.J., 2003. African Droughts and Dust Transport to the Caribbean: Climate Change Implications. Science 302, 1024.Google Scholar
Qiang, M.R., Chen, F.H., Song, L., Liu, X.X., Li, M.Z., Wang, Q., 2013. Late Quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Quaternary Research 79, 403412.Google Scholar
Qiang, M.R., Jin, Y.X., Liu, X.X., Song, L., Li, H., Li, F.S., Chen, F.H., 2016. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: variability, processes, and climatic implications. Quaternary Science Reviews 132, 5773.Google Scholar
Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana, M., Pérez, N., Pandolfi, M., de la Rosa, J., 2011. Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan air layer. Atmospheric Chemistry Physics 11, 66636685.Google Scholar
Roettig, C.-B., Varga, G., Sauer, D., Kolb, T., Wolf, D., Makowsky, V., Recio Espejo, J.M., Zöller, L., Faust, D., 2018. Characteristics, nature and formation of palaeosurfaces within dunes on Fuerteventura. Quaternary Research, doi:10.1017/qua.2018.52.Google Scholar
Runge, J., 2001. On the age of stone-lines and hillwash sediments in the eastern Congo basin – palaeoenvironmental implications. Palaeoecology of Africa and the Surrounding Islands 27, 1936.Google Scholar
Sadeghi, M., Petrosino, P., Ladenberger, A., Albanese, S., Andersson, M., Morris, G., Lima, A., De Vivo, B., the GEMAS Project Team. 2013. Ce, La and Y concentrations in agricultural and grazing-land soils of Europe. Journal of Geochemical Exploration 133, 202213.Google Scholar
Santana, I.V., Wall, F., Botelho, N.F., 2015. Occurrence and behavior of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: Potential for REE deposits. Journal of Geochemical Exploration 155, 113.Google Scholar
Scheinost, A.C., Chavernas, A., Barrón, V., Torrent, J., 1998. Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxides in soils. Clays and Clay Minerals 46, 528537.Google Scholar
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., Weinbruch, S., 2013. Bulk composition of northern African dust and its source sediments — a compilation. Earth-Science Reviews 116, 170194.Google Scholar
Schmincke, H., Sumita, M., 2010. Geological evolution of the Canary Islands: a young volcanic archipelago adjacent to the old African Continent. Ed. Görres Druckerei und Verlag GmbH, Koblenz, Germany.Google Scholar
Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit sauerAmmoniumoxalat-Lösung. Zeitschrift fur Pflanzenernahrung und Bodenkunde 105, 194202.Google Scholar
Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., Schneider, D.A., 1995. A new Late Neogene time scale: applications to leg 138 sites. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., van Andel, T.H. (Eds.), Proceedings ODP, Scientific Results 138. Ocean Drilling Program, College Station, TX, pp. 73101.Google Scholar
Sunnu, A., Afeti, G., Resch, F., 2008. A long-term experimental study of the Saharan dust presence in West Africa. Atmospheric Research 87, 1326.Google Scholar
Timmons, E.A., Fisher, T.G., Hansen, E.C., Eiasman, E., Daly, T., Kashgarian, M., 2007. Elucidating eolian dune history from lacustrine sand records in the Lake Michigan coastal zone, USA. The Holocene 17, 789801.Google Scholar
Torrent, J., Barrón, V., 2002. Diffuse reflectance spectroscopy of iron oxides. In: Hubbard, A.T. (Ed.), Encyclopedia of Surface and Colloid Science Vol 1. Marcel Dekker, New York, pp. 14381446.Google Scholar
Torrent, J., Liu, Q., Bloemendl, J., Barron, V., 2007. Magnetic enhancement and iron oxides in the upper Luochuan loess-palaeosol sequence, Chinese Loess Plateau. Soil Science Society of America Journal 71, 15701578.Google Scholar
Tyler, G., 2004. Rare earth elements in soil and plant systems - a review. Plant Soil 267, 191206.Google Scholar
Újvári, G., Kok, J.F., Varga, G., Kovács, J., 2016. The physics of wind-blown loess: Implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Science Reviews 15, 247278.Google Scholar
von Suchodoletz, H., Faust, D., Zöller, L., 2009a. Geomorphological investigations of sediment traps on Lanzarote (Canary Islands) as a key for the interpretation of a palaeoclimate archive off NW Africa. Quaternary International 196, 4456.Google Scholar
von Suchodoletz, H., Fuchs, M., Zöller, L., 2008. Dating Saharan dust deposits at Lanzarote (Canary Islands) by luminescence dating techniques and their implication for paleoclimate reconstruction of NW Africa. Geochemistry, Geophysics, and Geosystems 9, 119.Google Scholar
von Suchodoletz, H., Glaser, B., Thrippleton, T., Broder, T., Zang, U., Eigenmann, R., Kopp, B., Reichert, M., Zöller, L., 2013. The influence of Saharan dust deposits on La Palma soil properties (Canary Islands, Spain). Catena 103, 4452.Google Scholar
von Suchodoletz, H., Kühn, P., Hambach, U., Dietze, M., Zöller, L., Faust, D., 2009b. Loess-like and palaeosol sediments from Lanzarote (Canary Islands/Spain) -indicators of palaeoenvironmental change during the Late Quaternary. Palaeogeography, Palaeoclimate, Palaeoecology 278, 7187.Google Scholar
Wilkinson, M.T., Richards, P.J., Humphreys, G.S., 2009. Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth Science Reviews 97, 254269.Google Scholar
Wolfe, S.A., Hugenholtz, C.H., 2009. Barchan dunes stabilized under recent climate warming on the northern Great Plains. Geology 37, 10391042.Google Scholar
Wolfe, S.A., Huntley, D.A., Ollerhead, J., 2004. Relict Late Wisconsinan dune fields of the northern Great Plains. Canada Geographie physique et Quaternaire . 58, 323326.Google Scholar
Yang, S., Ding, F., Ding, Z., 2006. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta 70, 16951709.Google Scholar
Yu, L.P., Lai, Z.P., 2012. OSL chronology and palaeoclimatic implications of Aeolian sediments in the eastern Qaidam Basin of the northeastern Qinghai-Tibetan Plateau. Palaeogeography, Palaeoclimate, Palaeoecology 337–338, 120129.Google Scholar
Zeng, L., Lua, H., Yi, S., Stevens, T., Xu, Z., Zhuo, H., Yu, K., Zhang, H., 2017. Long-term Pleistocene aridification and possible linkage to high-latitude forcing: new evidence from grain size and magnetic susceptibility proxies from loess-palaeosol record in northeastern China. Catena 154, 2132.Google Scholar
Zhang, J.R., Nottebaum, V., Tsukamoto, S., Lehmkuhl, F., Frechen, M., 2015. Late Pleistocene and Holocene loess sedimentation in central and western Qilian Shan (China) revealed by OSL dating. Quaternary International 372, 120129.Google Scholar
Zhang, W., Yu, L., Lu, M., Zheng, X., Ji, J., Zhou, L., Wang, X., 2009. East Asian summer monsoon intensity inferred from iron oxide mineralogy in the Xiashu Loess in southern China. Quaternary Science Reviews 28, 345353.Google Scholar
Zhao, L., Honga, H., Fanga, Q., Yina, K., Wang, C, Li, Z, Torrent, J, Cheng, F, Algeoa, T.J., 2017. Monsoonal climate evolution in southern China since 1.2 Ma: New constraints from Fe-oxide records in red earth sediments from the Shengli section, Chengdu Basin. Paleogeography, Palaeoclimate, Palaeoecology 473, 115.Google Scholar