Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T05:28:37.023Z Has data issue: false hasContentIssue false

Assessing the effects of climate change and land use on northern Labrador forest stands based on paleoecological data

Published online by Cambridge University Press:  20 January 2017

Isabel Lemus-Lauzon*
Affiliation:
Centre d’études nordiques and Département de géographie, Université Laval, Québec, QC, Canada
Najat Bhiry
Affiliation:
Centre d’études nordiques and Département de géographie, Université Laval, Québec, QC, Canada
James Woollett
Affiliation:
Centre d’études nordiques and Département des sciences historiques, Université Laval, Québec, QC, Canada
*
*Corresponding author. Centre d’études nordiques and Département de geographie, Université Laval, 2405, rue de la terrasse, Quebec, QC G1V 1A0, Canada. E-mail address:isabel.lemus-lauzon.1@ulaval.ca(I. Lemus-Lauzon)

Abstract

We reconstructed the late Holocene vegetation of the Nain region (northern Labrador, northeastern Canada) in order to assess the influence of climate and historic land use on past shifts in forest composition. Chronostratigraphy was used in combination with macrofossil and pollen data from monoliths sampled from four peatlands. Paleoecological reconstructions produced a vegetation history spanning 4900 years for the Nain region that is largely concordant with other studies in Labrador. An initial open forest tundra phase was followed by an increase in tree cover at around 2800 cal yr BP. Paludification began ∼200 cal yr BP. A decline in Picea and its subsequent disappearance from most of the sites occurred ∼170 cal yr BP (AD 1780) in a period of relatively mild conditions during the Little Ice Age. This event was followed by the establishment of Larix laricina in the region. Local anthropogenic factors are likely responsible for these later developments, as they were not observed in other regional studies. The period around AD 1780 corresponds to the establishment of the Moravian missionaries on the Labrador coast, which increased the need for fuel and lumber. We conclude that changes in land use are reflected in the patterns of vegetation and hydrological change at the study sites.

Type
Research Article
Copyright
Copyright © University of Washington 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arseneault, D., Payette, S., 1997. Reconstruction of millennial forest dynamics from tree remains in a subarctic tree line peatland. Ecology 78, 18731883 CrossRefGoogle Scholar
Ayotte, G., Rochefort, L., 2014. Les sphaignes du Québec, du Labrador et des Maritimes. Clés visuelles d’identification. Université Laval, Quebec.Google Scholar
Barlow, L.K., 2001. The time period A.D. 1400-1980 in central Greenland ice cores in relation to the North Atlantic sector. Climatic Change 48, 101119 Google Scholar
Barry, R., Arundale, W.H., Andrews, J.T., Bradley, R.S., Nichols, H., 1977. Environmental change and cultural change in the eastern Canadian Arctic during the last 5000 years. Arctic and Alpine Research 9, 193210 Google Scholar
Benninghoff, W.S., 1962. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et spores 4, 332333.Google Scholar
Bhiry, N., Filion, L., 2001. Analyse des macrorestes végétaux. In: Payette, S., Rochefort, L. (Eds.), écologie des tourbiéres du Québec-Labrador. Les Presses de l’Universite Laval, Québec, pp. 259273.Google Scholar
Birks, H., 1996. Contributions of quaternary palaeoecology to nature conservation. Journal of Vegetation Science 7, 8998.Google Scholar
Brice-Bennett, C., 1977. Our Footprints are Everywhere: Inuit Land-Use and Occupancy in Labrador. Labrador Inuit Association, Nain, Labrador.Google Scholar
Brice-Bennett, C., 1981. Two Opinions: Inuit and Moravian Missionaries in Labrador, 1804-1860. M.A. thesis. Memorial University of Newfoundland, St. John’s.Google Scholar
Brown, J., Ferrians, O.J. Jr., Heginbottom, J.A., Melnikov, E.S., 2001. Circum-arctic Map of Permafrost and Ground Ice Conditions. National Snow and Ice Data Center, Boulder, CO (Digital media URL).Google Scholar
Camill, P., Umbanhowar, C., Geiss, C., Hobbs, W.O., Edlund, M.B., Shinneman, A.C., Dorale, J.A., Lynch, J., 2012. Holocene climate change and landscape development from a low-Arctic tundra lake in the western Hudson Bay region of Manitoba, Canada. Journal of Paleolimnology 48, 175192 CrossRefGoogle Scholar
Clark, P.U., Fitzhugh, W.W., 1990. Late deglaciation of the central Labrador coast and its implications for the age of glacial lakes Naskaupi and McLean and for prehistory. Quaternary Research 34, 296305.Google Scholar
Crum, H.A., Anderson, L.E., 1981. Mosses of Eastern North America. Columbia University Press, New York.Google Scholar
Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gundestrup, N., Hammer, C., Hvidberg, C., Steffensen, J., Sveinbjörnsdottir, A., Jouzel, J., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
D’Arrigo, R., Buckley, B., Kaplan, S., Woollett, J., 2003. Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Climate Dynamics 20, 219228.Google Scholar
D’Arrigo, R.D., Jacoby, G.C., 1993. Secular trends in high northern latitude temperature reconstructions based on tree rings. Climatic Change 25, 163177 Google Scholar
Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central and northern Canada. Quaternary Glaciations: Extent and Chronology 2, 373424.Google Scholar
Elliot, D.L., Short, K.S., 1979. The northern limit of trees in Labrador: a discussion. Arctic 32, 201206.Google Scholar
Environment Canada, 2015. Climate normals & averages. http://climate.weather.gc.ca/climate_normals/index_e.html.Google Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. John Wiley and Sons, New York.Google Scholar
Faubert, J., 2012. Flore des bryophytes du Québec-Labrador. Société Québecoise de bryologie, St-Valérien, Québec.Google Scholar
Filion, L., 1984. A relationship between dunes, fire and climate recorded in the Holocene deposits of Québec. Nature 309, 543546.Google Scholar
Fitzhugh, W., Lamb, H.F., 1985. Vegetation history and culture change in Labrador prehistory. Arctic and Alpine Research 17, 357370.Google Scholar
Gaillard, M.-J., Birks, H.J.B., Emanuelsson, U., Berglund, B.E., 1992. Modern pollen/land-use relationships as an aid in the reconstruction of past land-uses and cultural landscapes: an example from south Sweden. Vegetation History and Archeobotany 1, 317.Google Scholar
Gajewski, K., Payette, S., Ritchie, J.C., 1993. Holocene vegetation history at the boreal-forest-shrub-tundra transition in North-Western Québec. Journal of Ecology 433443.CrossRefGoogle Scholar
Gennaretti, F., Arseneault, D., Nicault, A., Perreault, L., Begin, Y., 2014. Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proceedings of the National Academy of Sciences 111, 1007710082.Google Scholar
Grumet, N.S., Wake, C.P., Mayewski, P.A., Zielinski, G.A., Whitlow, S.I., Koerner, R.M., Fisher, D.A., Woollett, J.M., 2001. Variability of sea-ice extent in Baffin Bay over the last millennium. Climatic Change 49, 129145 Google Scholar
Gustajtis, K.A., 1979. Oceanography and Climatology of the Labrador Sea. In: LeDrew, B.R., Gustajtis, K.A. (Eds.), Oil Spill Scenario for the Labrador Sea. Government of Canada, Ottawa, pp. 81148.Google Scholar
Halfar, J., Adey, W.H., Kronz, A., Hetzinger, S., Edinger, E., Fitzhugh, W.W., 2013. Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proceedings of the National Academy of Sciences 110, 1973719741 Google Scholar
Hood, B.C., 2008. Towards an Archaeology of the Nain Region, Labrador. Contributions to Circumpolar Anthropology, vol. 7.Google Scholar
Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55, 20592072.Google Scholar
Jackson, R.M., Mason, P.A., 1984. Mycorrhiza. Edward Arnold, London.Google Scholar
Jacoby, G.C., D’Arrigo, R., 1989. Reconstructed Northern Hemisphere annual temperature since 1671 based on high-latitude tree-ring data from North America. Climatic Change 14, 3959.Google Scholar
Jessen, C.A., Solignac, S., Nørgaard-Pedersen, N., Mikkelsen, N., Kuijpers, A., Seidenkrantz, M.S., 2011. Exotic pollen as an indicator of variable atmospheric circulation over the Labrador Sea region during the mid to late Holocene. Journal of Quaternary Science 26, 286296.Google Scholar
Jordan, R., 1975. Pollen diagrams from Hamilton Inlet, central Labrador, and their environmental implications for the northern Maritime Archaic. Arctic Anthropology 92116.Google Scholar
Josefsson, T., Olsson, J., Ostlund, L., 2010. Linking forest history and conservation efforts: long-term impact of low-intensity timber harvest on forest structure and wood-inhabiting fungi in northern Sweden. Biological Conservation 143, 18031811.Google Scholar
Juggins, S., 2002. Palaeo Data Plotter, Beta Test version 1.0. University of Newcastle.Google Scholar
Kaplan, S., 1983. Economic and Social Change in Labrador Neo-Eskimo Culture. Ph.D. dissertation. Bryn Mawr College, Pennsylvania, USA.Google Scholar
Kaplan, S., 2009. From the forested bays to tundra covered passes: transformation of the Labrador landscape. In: Grønnow, B. (Ed.), On the Track of the Thule Culture from Bering Strait to East Greenland, vol. 15. SILA, Publications from the National Museum, Studies in Archaeology and History, Copenhagen, pp. 119128.Google Scholar
Kaplan, S., 2012. Labrador Inuit ingenuity and resource fulness: adapting to a complex environmental, social and spiritual environment. In: Natcher, D., Felt, L., Procter, A. (Eds.), Settlement, Subsistence and Change Among the Labrador Inuit. University of Manitoba Press, Winnipeg, pp. 1542.CrossRefGoogle Scholar
Kaplan, M.R., Wolfe, A.P., Miller, G., 2002. Holocene environmental variability in southern Greenland inferred from lake sediments. Quaternary Research 58, 149159.CrossRefGoogle Scholar
Kerwin, M., Overpeck, J., Webb, R., Anderson, K., 2004. Pollen-based summer temperature reconstructions for the eastern Canadian boreal forest, subarctic, and Arctic. Quaternary Science Reviews 23, 19011924 Google Scholar
Lamb, H., 1980. Late Quaternary vegetational history of southeastern Labrador. Arctic and Alpine research 12, 117135.Google Scholar
Lemieux, A.-M., Bhiry, N., Desrosier, P., 2011. The geoarchaeology and traditional knowledge of winter sod houses in eastern Hudson Bay, Canadian low Arctic. Geoarchaeology An international Journal 26, 479500.Google Scholar
Lemus-Lauzon, I., Bhiry, N., Woollett, J., 2012. Napâttuit: wood use by Labrador Inuit and its impact on the forest landscape. études/Inuit/Studies 36, 113137 Google Scholar
Levac, E., de Vernal, A., 1997. Postglacial changes of terrestrial and marine environments along the Labrador coast: palynological evidence from cores 91-045-005 and 91-045-006, Cartwright Saddle. Canadian Journal of Earth Sciences 34, 13581365.Google Scholar
Lévesque, P., Dinel, H., Larouche, A., 1988. Guide illustré des macrofossiles végétaux des tourbiéres du Canada. Laboratoire de paléobiogéographie et de palynologie, Département de géographie, Université de Montréal.Google Scholar
Lindbladh, M., Fraver, S., Edvarsson, J., Felton, A., 2013. Past forest composition, structures and processeseHow paleoecology can contribute to forest conservation. Biological Conservation 168, 116127.Google Scholar
MacDonald, G.M., 2009. Some Holocene palaeoclimatic and palaeoenvironmental perspectives on Arctic/Subarctic climate warming and the IPCC 4th assessment report. Journal of Quaternary Science 25, 3947.Google Scholar
Marie-Victorin, F., 1995. Flore laurentienne, 3e édition mise à jour par L. Brouillet, SG Hay et I. Goulet en collaboration avec M. Blondeau, J. Cayouette et J. Lab-recque edition. Les Presses de l’Universite de Montreal, Montreal.Google Scholar
Mayewski, P., Meeker, L., Whitlow, S., Twickler, M., Morrison, M., Bloomfield, P., Bond, G., Alley, R., Gow, A., Grootes, P., 1994. Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263, 17471751.Google Scholar
McAndrews, J.H., Berti, A.A., et Norris, G., 1973. Key to the Quaternary Pollen and Spores of the Great Lakes Region. Life Science Miscellaneous Publication. Royal Ontario Museum, Toronto.Google Scholar
McAndrews, J.H., Samson, G., 1977. Analyse pollinique et implications archéologiques et geomorphologiques, lac de la Hutte Sauvage (Mushuau Nipi), Nouveau-Québec. Géographie physique et Quaternaire 31, 177183.Google Scholar
Meese, D.A., Gow, A., Grootes, P., Mayewski, P., Ram, M., Stuiver, M., Taylor, K., Waddington, E., Zielinski, G., 1994. The accumulation record from the GISP2 core as an indicator of climate-change throughout the Holocene. Science 266, 16801682.Google Scholar
Montgomery, F.H., 1977. Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. University of Toronto Press, Toronto.Google Scholar
Neil, K., Gajewski, K., Betts, M., 2014. Human-ecosystem interactions in relation to Holocene environmental change in port joli harbour, Southwestern Nova Scotia, Canada. Quaternary Research 81, 203212.Google Scholar
Newell, J.P., 1990. Spring and Summer Sea Ice and Climate Conditions in the Labrador Sea, 1800-present. PhD dissertation. University of Colorado, Boulder, Colorado, USA.Google Scholar
Notzl, G.R., Riley, J.L., 2013. Labrador Nature Atlas. Nature Conservancy of Canada, Toronto, Ontario.Google Scholar
Ogilvie, A.E.J., Jonsson, T., 2001. Little ice agenin” research: a perspective from Iceland. Climatic Change 48, 952.CrossRefGoogle Scholar
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., Macdonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G., 1997. Arctic environmental change of the last four centuries. Science 278, 12511256.Google Scholar
Payette, S., 1983. The forest tundra and present tree-lines of the northern Québec-Labrador peninsula. Nordicana 47, 323.Google Scholar
Payette, S., 1993. The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Review of Palaeobotany and Palynology 79, 730.Google Scholar
Payette, S., 2007. Contrasted dynamics of northern Labrador tree-lines caused by climate change and migrational lag. Ecology 88, 770780.Google Scholar
Payette, S., Filion, L., Gauthier, L., Boutin, Y., 1985. Secular climate change in old-growth tree-line vegetation of northern Québec. Nature 315, 135138.Google Scholar
Reimer, P.J., et al., 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51, 11111150.Google Scholar
Richard, P.J.H., 1970. Atlas pollinique des arbres et de quelques arbustes indigenes du Québec. Le Naturaliste canadien 97, 241306, 1-34, 97161.Google Scholar
Richard, P.J.H., 1995. Le couvert végétal du Québec-Labrador il y a 6000 ans BP: essai. Géographie physique et Quaternaire 49, 117140.Google Scholar
Richard, P.J.H., Labelle, C., 1989. Histoire postglaciaire de la vegetation au lac du Diable, mont Albert, Gaspésie, Québec. Géographie physique et Quaternaire 43, 337354.Google Scholar
Ritchie, J.C., Hare, F., 1971. Late-Quaternary vegetation and climate near the arctic tree line of northwestern North America. Quaternary Research 1, 331342.Google Scholar
Rollmann, H., 2001. The 1782 Mission House and 1817 Parks Canada Building at Hopedale (Unpublished report prepared for Parks Canada, on file at the Torngasok Cultural Centre, Nain).Google Scholar
Roy, N., Bhiry, N., Woollett, J., 2012. Environmental change and terrestrial resource use by the thule and Inuit of Labrador, Canada. Geoarchaeology 27, 1833.Google Scholar
Roy, N., Bhiry, N., Woollett, J., 2015. Paleoecological perspectives on landscape history and anthropogenic impacts at Uivak Point, Labrador, since AD 1400. The Holocene 114.Google Scholar
Statistics Canada, 2011. Nain, Newfoundland and Labrador 2011 Census, Ottawa. http://www12.statcan.ca/census-recensement/2011/dp-pd/prof/index.cfm?Lang=E].Google Scholar
Steelandt, S., Bhiry, N., Marguerie, D., Desbiens, C., Napartuk, M., Desrosiers, P., 2013. >Inuit knowledge and use of wood resources on the west coast of Nunavik, Canada. éEtudes/Inuit/Studies 37, 147173.Google Scholar
Steelandt, S., Marguerie, D., Bhiry, N., Delwaide, A., 2015. A study of the composition, characteristics, and origin of modern driftwood on the western coast of Nunavik (Québec, Canada). Journal of geophysical Research: Biogeosciences 120, 122.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2014. CALIB Rev 7.1. http://calib.qub.ac.uk/calib/calmenu.Google Scholar
Swetnam, T.W., Allen, C., Betancourt, J., 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications 9, 11891206.Google Scholar
Teillet, J.V., 1988. A reconstruction of summer sea ice conditions in the Labrador Sea using Hudson’s Bay Company ships’ log-books, 1751 to 1870. PhD dissertation. University of Manitoba, Winnipeg, Manitoba, Canada.Google Scholar
Telford, R.J., Heegaard, E., Birks, H.J.B., 2004. All age-depth models are wrong: but how badly? Quaternary Science Reviews 23, 15.Google Scholar
Way, R.G., Viau, A.E., 2014. Natural and forced air temperature variability in the Labrador region of Canada during the past century. Theoretical and Applied Climatology 112.Google Scholar
Williamson, T., 1997. From Sina to Sikujaluk: Our Footprint, Mapping Inuit Environmental Knowledge in Nain District of Northern Labrador. Labrador Inuit Association, Nain.Google Scholar
Willis, K.J., Araújo, M., Bennett, K., Figueroa-Rangel, B., Froyd, C., Myers, N., 2007. How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philosophical Transactions of the Royal Society B. Biological Sciences 362, 175187.Google Scholar
Willis, K.J., Birks, H.J.B., 2006. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, 12611265.CrossRefGoogle ScholarPubMed
Wood, C., Smith, D., 2004. Dendroglaciological evidence for a neoglacial advance of the Saskatchewan glacier, Banff National Park, Canadian Rocky Mountains. Tree-Ring Research 60 (1), 5965.Google Scholar
Woollett, J., 2007. Labrador Inuit subsistence in the context of environmental change: an initial landscape history perspective. American Anthropologist 109, 6984.Google Scholar
Woollett, J., 2010. Oakes Bay 1: a preliminary reconstruction of a Labrador Inuit seal hunting economy in the context of climate change. Geografisk Tidsskrift-Danish Journal of Geography 110, 245260.Google Scholar
Zutter, C., 2009. Paleoethnobotanical contributions to 18th-century Inuit economy: an example from Uivak, Labrador. Journal of the North Atlantic 1, 2332 special volume.Google Scholar
Zutter, C., 2012. The shrubs in the forest: the use of woody species by 18th-century Labrador Inuit. études/Inuit/Studies 36, 139155.Google Scholar