Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T07:53:14.207Z Has data issue: false hasContentIssue false

Binary sources of loess on the Chinese Loess Plateau revealed by U–Pb ages of zircon

Published online by Cambridge University Press:  20 January 2017

Abstract

The age distribution of detrital zircon has been used to trace sediment sources. Existing datasets show great similarity of zircon ages between the loess on the Chinese Loess Plateau (CLP) and the sediments from the North Tibetan Plateau (NTP), implying that eolian dust is delivered from the NTP to the CLP by westerly winds or via the Yellow River. However, NTP dust can also be transported by northwesterly winds from the Alxa arid lands (AALs), where materials are received from both the NTP and the Gobi Altay Mountains (GAMs). Here we report U–Pb zircon ages for AALs sands and NTP and CLP loess. The results show that the zircons in the AALs are mixed from NTP and GAMs zircons. NTP loess is mainly derived from local sources. Mixing of materials from the NTP and GAMs defines the zircon ages of the loess on the CLP better than the pure NTP source. No temporal and spatial heterogeneities of zircon ages have been observed for the loess on the CLP, which suggests that the well-mixed materials in the AALs likely have an eolian source.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, F., Ma, H., Wei, H., Lai, Z., (2012). Distinguishing aeolian signature from lacustrine sediments of the Qaidam Basin in northeastern Qinghai-Tibetan Plateau and its palaeoclimatic implications. Aeolian Research 4, 1730.CrossRefGoogle Scholar
An, Z., Colman, S.M., Zhou, W., Li, X., Brown, E.T., Jull, A.J.T., Cai, Y., Huang, Y., Lu, X., Chang, H., Song, Y., Sun, Y., Xu, H., Liu, W., Jin, Z., Liu, X., Cheng, P., Liu, Y., Ai, L., Li, X., Liu, X., Yan, L., Shi, Z., Wang, X., Wu, F., Qiang, X., Dong, J., Lu, F., Xu, X., (2012). Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports 2, 10.1038/srep00619.Google Scholar
Andersen, T., (2002). Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Black, L.P., Gulson, B.L., (1978). The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR Journal of Geology and Geophysics 3, 227232.Google Scholar
Bowler, J.M., Chen, K.Z., Yuan, B.Y., (1987). Systematic variations in loess source areas: evidence from Qaidam and Qinghai basins, western China. Liu, T.S. Aspects of Loess Research. China Ocean Press, Beijing.3951.Google Scholar
Bussien, D., Gombojav, N., Winkler, W., von Quadt, A., (2011). The Mongol–Okhotsk Belt in Mongolia — an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons. Tectonophysics 510, 132150.CrossRefGoogle Scholar
Chen, J., Li, G., (2011). Geochemical studies on the source region of Asian dust. Science China Earth Sciences 54, 12791301.Google Scholar
Chen, Z., Li, G., (2013). Evolving sources of eolian detritus on the Chinese Loess Plateau since early Miocene: tectonic and climatic controls. Earth and Planetary Science Letters 371–372, 220225.Google Scholar
Chen, J., An, Z., Head, J., (1999). Variation of Rb/Sr ratios in the loess–paleosol sequences of Central China during the Last 130,000 years and Their implications for monsoon paleoclimatology. Quaternary Research 51, 215219.CrossRefGoogle Scholar
Chen, J., Li, G.J., Yang, J.D., Rao, W.B., Lu, H.Y., Balsam, W., Sun, Y.B., Ji, J.F., (2007). Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta 71, 39043914.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Gillespie, A.R., (2010). Active sand seas and the formation of desert loess. Quaternary Science Reviews 29, 20872098.Google Scholar
Crouvi, O., Schepanski, K., Amit, R., Gillespie, A.R., Enzel, Y., (2012). Multiple dust sources in the Sahara Desert: the importance of sand dunes. Geophysical Research Letters 39, L13401.Google Scholar
Derbyshire, E., Meng, X., Kemp, R.A., (1998). Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record. Journal of Arid Environments 39, 497516.CrossRefGoogle Scholar
Engelbrecht, J.P., Derbyshire, E., (2010). Airborne mineral dust. Elements 6, 241246.CrossRefGoogle Scholar
Ge, J.Y., Guo, Z.T., (2010). Neogene eolian deposits within the West Qinling Mountains: climatic and tectonic implications. Chinese Science Bulletin 55, 14831487.CrossRefGoogle Scholar
Gehrels, G.E., Yin, A., Wang, X.-F., (2003). Detrital-zircon geochronology of the northeastern Tibetan plateau. Geological Society of America Bulletin 115, 881896.2.0.CO;2>CrossRefGoogle Scholar
Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., Yin, A., (2011). Detrital zircon geochronology of pre-Tertiary strata in the Tibetan–Himalayan orogen. Tectonics 30, TC5016.Google Scholar
Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Izmer, A., Vandoorne, W., Ryabinin, A., Van den haute, P., Vanhaecke, F., Elburg, M.A., (2011). Formation and Palaeozoic evolution of the Gorny-Altai — Altai-Mongolia suture zone (South Siberia): zircon U/Pb constraints on the igneous record. Gondwana Research 20, 465484.Google Scholar
Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., Liu, T.S., (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159163.CrossRefGoogle ScholarPubMed
Heller, F., Liu, T.-S., (1982). Magnetostratigraphical dating of loess deposits in China. Nature 300, 431433.CrossRefGoogle Scholar
Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., (2004). The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Ji, J., Chen, J., Lu, H., (1999). Origin of illite in the loess from the Luochuan area, Loess Plateau, central China. Clay Minerals 34, 525532.CrossRefGoogle Scholar
Li, G., Chen, J., Chen, Y., Yang, J., Ji, J., Liu, L., (2007). Dolomite as a tracer for the source regions of Asian dust. Journal of Geophysical Research 112, D17201 10.1029/2007JD008676.Google Scholar
Li, G., Chen, J., Ji, J., Yang, J., Conway, T.M., (2009). Natural and anthropogenic sources of East Asian dust. Geology 37, 727730.Google Scholar
Li, G., Pettke, T., Chen, J., (2011). Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology 39, 199202.Google Scholar
Liu, T.S., (1985). Loess and the Environment. China Ocean Press, Beijing.1321.Google Scholar
Liu, C.Q., Masuda, A., Okada, A., Yabuki, S., Fan, Z.L., (1994). Isotope geochemistry of Quaternary deposits from the arid lands in Northern China. Earth and Planetary Science Letters 127, 2538.CrossRefGoogle Scholar
Liu, T., Ding, M., Derbyshire, E., (1996). Gravel deposits on the margins of the Qinghai-Xizang Plateau, and their environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 159170.Google Scholar
Lu, H.Y., An, Z.S., (1998). Paleoclimatic significance of grain size of loess–palaeosol deposit in Chinese Loess Plateau. Science in China Series D-Earth Sciences 41, 626631.CrossRefGoogle Scholar
Martínez-Camblor, P., de Uña-Álvarez, J., (2009). Non-parametric -sample tests: density functions vs distribution functions. Computational Statistics & Data Analysis 53, 33443357.Google Scholar
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H., Jan Weltje, G., (2007). Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26, 230242.Google Scholar
Pullen, A., Kapp, P., McCallister, A.T., Chang, H., Gehrels, G.E., Garzione, C.N., Heermance, R.V., Ding, L., (2011). Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology 39, 10311034.CrossRefGoogle Scholar
Qiang, X., An, Z., Song, Y., Chang, H., Sun, Y., Liu, W., Ao, H., Dong, J., Fu, C., Wu, F., Lu, F., Cai, Y., Zhou, W., Cao, J., Xu, X., Ai, L., (2011). New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Science China Earth Sciences 54, 136144.Google Scholar
Rao, W., Chen, J., Yang, J., Ji, J., Li, G., Tan, H., (2008). Sr–Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: implications for their provenances. Geochemical Journal 42, 273282.CrossRefGoogle Scholar
Rea, D.K., Snoeckx, H., Joseph, L.H., (1998). Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13, 215224.CrossRefGoogle Scholar
Smalley, I., (1995). Making the material: the formation of silt sized primary mineral particles for loess deposits. Quaternary Science Reviews 14, 645651.Google Scholar
Stevens, T., Palk, C., Carter, A., Lu, H., Clift, P.D., (2010). Assessing the provenance of loess and desert sediments in northern China using U–Pb dating and morphology of detrital zircons. Geological Society of America Bulletin 122, 13311344.Google Scholar
Stevens, T., Carter, A., Watson, T.P., Vermeesch, P., Andò, S., Bird, A.F., Lu, H., Garzanti, E., Cottam, M.A., Sevastjanova, I., (2013). Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quaternary Science Reviews 10.1016/j.quascirev.2012.1011.1032.CrossRefGoogle Scholar
Sun, J.M., (2002). Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters 203, 845859.Google Scholar
Sun, D.H., Shaw, J., An, Z.S., Cheng, M.Y., Yue, L.P., (1998). Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophysical Research Letters 25, 8588.Google Scholar
Sun, J.M., Zhang, M.Y., Liu, T.S., (2001). Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. Journal of Geophysical Research-Atmospheres 106, 1032510333.CrossRefGoogle Scholar
Sun, Y.B., Tada, R.J., Chen, J.C., Liu, Q.S., Toyoda, S., Tani, A., Ji, J.F., Isozaki, Y., (2008). Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau. Geophysical Research Letters 35, L01804 10.1029/2007GL031672.Google Scholar
Vermeesch, P., (2012). On the visualisation of detrital age distributions. Chemical Geology 312–313, 190194.Google Scholar
Vermeesch, P., (2013). Multi-sample comparison of detrital age distributions. Chemical Geology 341, 140146.CrossRefGoogle Scholar
Wang, X., Dong, Z., Zhang, J., Liu, L., (2004). Modern dust storms in China: an overview. Journal of Arid Environments 58, 559574.Google Scholar
Xiao, G., Zong, K., Li, G., Hu, Z., Dupont-Nivet, G., Peng, S., Zhang, K., (2012). Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau. Geophysical Research Letters 39, L20715.CrossRefGoogle Scholar
Xie, J., Wu, F.Y., Ding, Z.L., (2007). Detrital zircon composition of U–Pb ages and Hf isotope of the Hunshandake sandy land and implications for its provenance. Acta Petrologica Sinica 523528.Google Scholar
Xie, J., Yang, S., Ding, Z., (2012). Methods and application of using detrital zircons to trace the provenance of loess. Science China Earth Sciences 55, 18371846.CrossRefGoogle Scholar
Yang, S., Ding, Z., (2008). Advance"retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial–interglacial cycles. Earth and Planetary Science Letters 274, 499510.Google Scholar
Zhou, L.P., Oldfield, F., Wintle, A.G., Robinson, S.G., Wang, J.T., (1990). Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346, 737739.Google Scholar
Supplementary material: File

Che and Li supplementary material

Supplementary Material

Download Che and Li supplementary material(File)
File 330.9 KB