Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:55:20.170Z Has data issue: false hasContentIssue false

Climate and Biomass Control on Fire Activity during the Late-Glacial/Early-Holocene Transition in Temperate Ecosystems of the Upper Rhone Valley (France)

Published online by Cambridge University Press:  20 January 2017

Élise Doyen*
Affiliation:
Laboratoire Chrono-environnement, UMR 6249 CNRS, Université de Franche-Comté, Besançon, France
Boris Vannière
Affiliation:
Laboratoire Chrono-environnement, UMR 6249 CNRS, Université de Franche-Comté, Besançon, France
Damien Rius
Affiliation:
Laboratoire Chrono-environnement, UMR 6249 CNRS, Université de Franche-Comté, Besançon, France
Carole Bégeot
Affiliation:
Laboratoire Chrono-environnement, UMR 6249 CNRS, Université de Franche-Comté, Besançon, France
Laurent Millet
Affiliation:
Laboratoire Chrono-environnement, UMR 6249 CNRS, Université de Franche-Comté, Besançon, France
*
*Corresponding author. E-mail address:el.doyen@laposte.net (É. Doyen).

Abstract

The main objective of this study is to document paleofire activity during the late-glacial/early-Holocene transition in temperate ecosystems. For this purpose, we cored lakes Paladru and Moras (Rhone valley, France) and quantified sedimentary charcoal accumulation rate and fire frequency. To assess the role of climate and vegetation in paleofire activity, charcoal data were compared to vegetation dynamics based on pollen analyses and to climate reconstructions. The first increase in paleofire activity occurred at the beginning of the Bølling/Allerød Interstadial period (14,500 cal yr BP), synchronous with temperature and fire-prone vegetation increases. During the Younger Dryas, paleofire activity first decreased (12,600–12,200 cal yr BP) and then abruptly increased (12,200–11,600 cal yr BP). This change corresponds to a known climate partitioning that occurred during the Younger Dryas and implies that a sufficient quantity of biomass was available during the second period. At the beginning of the Holocene, fire activity remained high. This is in agreement with the increases in temperature and vegetation density. The change in forest composition since ca. 11,200 cal yr BP partly explains the decrease in paleofire activity, whereas warm climate conditions seem suitable for fire ignition and propagation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, B., Birks, H.J.B., Drescher-Schneider, R., Juggins, S., Lang, G., and Lotter, A.F. 1993. Patterns of variation in Late Glacial pollen stratigraphy along a north-west–south-east transect through Switzerland – a numerical analysis.. Quaternary Science Reviews 12, 277286.Google Scholar
Argant, J., Bégeot, C., and Marrocchi, Y. 2008. L'environnement végétal au Tardiglaciaire " partir de l'étude pollinique de trois lacs: La Thuile, Saint-Jean-de-Chevelu et Moras.. In: Pion, G. (Ed.), La fin du Paléolithique supérieur dans les Alpes du nord françaises et le Jura méridional. Approches culturelles et environnementales (Réflexions et synthèses " partir d'un projet collectif de recherche). Mémoire de la Société préhistorique française.Google Scholar
Beug, H.-J. 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiet. Pfeil, München (D).Google Scholar
Birks, H.J.B., and Ammann, B. 2000. Two terrestrial records of rapid climatic change during the glacial–Holocene transition (14,000–9,000 calendar years B.P.) from Europe.. Proceedings of the National Academy of Sciences of the United States of America 97, 13901394.Google Scholar
Blaauw, M. 2010. Methods and code for “classical” age-modelling of radiocarbon sequences.. Quaternary Geochronology 5, 512518.Google Scholar
Blackford, J.J. 2000. Charcoal fragments in surface samples following a fire and the implications for interpretation of subfossil charcoal data.. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 3342.Google Scholar
Bowman, D.M., Balch, J.K., and Artaxo, P. 2009. Fire in the Earth system.. Science 324, 481484.Google Scholar
Briles, C.E., Whitlock, C., and Meltzer, D. 2012. Last glacial–interglacial environments in the southern Rocky Mountains, USA and implications for Younger Dryas-age human occupation.. Quaternary Research 77, 96103.Google Scholar
Brown, T. 1997. Clearances and clearings: deforestation in Mesolithic/Neolithic Britain.. Oxford Journal of Archaeology 16, 133146.Google Scholar
Clark, J.S. 1988. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling.. Quaternary Research 30, 6780.CrossRefGoogle Scholar
Clark, J.S., Merkt, I., and Muller, H. 1989. Post-Glacial fire, vegetation and human history of the northern Alpine Forelands, southwestern Germany.. Journal of Ecology 77, 897925.Google Scholar
Clerc, J. 1988. Recherches pollenanalytiques sur la paléoécologie tardiglaciaire et holocène du Bas-Dauphiné. Université de Droit, d'Economie et des Sciences d'Aix/Marseille, Aix en Provence/Marseille.Google Scholar
Cofer, W.R., Koutzenogii, K.P., Kokorin, A., and Ezcurra, A. 1997. Biomass burning emissions and the atmosphere.. In: Clark, J.S., Cachier, H., Goldammer, J.G., Stocks, B. (Eds.), Sediment Records of Biomass Burning and Global Change. Springer, Berlin., pp. 189206.Google Scholar
Colombaroli, D., Vanniere, B., Chapron, E., Magny, M., and Tinner, W. 2008. Fire–vegetation interactions during the Mesolithic–Neolithic transition at Lago dell'Accesa, Tuscany, Italy.. The Holocene 18, 679692.CrossRefGoogle Scholar
Connor, S.E., Araùjo, J., van der Knaap, W.O., and van Leeuwen, J.F.N. 2012. A long-term perspective on biomass burning in the Serra da Estrela, Portugal.. Quaternary Science Reviews 55, 114124.CrossRefGoogle Scholar
Daniau, A.-L., Tinner, W., and Bartlein, P.J. 2012. Predictability of biomass burning in response to climate changes.. Global Biogeochemical Cycles 26, 4 10.1029/2011GB004249.Google Scholar
David, F. 2001. Le tardiglaciaire des Ételles (Alpes françaises du Nord): instabilité climatique et dynamique de végétation.. Comptes Rendus de l'Académie des Sciences Paris 324, 373380.Google Scholar
de Beaulieu, J.-L., Richard, H., Ruffaldi, P., and Clerc, J. 1994. History of vegetation, climate and human action in the French Alps and the Jura over the last 15000 years.. Dissertationes Botanicae 234, 253275.Google Scholar
de Klerk, P. 2008. Patterns in vegetation and sedimentation during the Weichselian Late-Glacial in north-eastern Germany.. Journal of Biogeography 35, 13081322.Google Scholar
Doyen, E., Vannière, B., Berger, J.-F., Arnaud, F., Tachikawa, K., and Bard, E. 2013a. Land-use changes and environmental dynamics in the upper Rhone valley since Neolithic Times inferred from sediments of Lac Moras.. The Holocene 23, 961973.Google Scholar
Doyen, E., Vannière, B., Bichet, V., Gauthier, E., Richard, H., and Petit, C. 2013b. Vegetation history and landscape management from 6500 to 1500 cal. B.P. at Lac d'Antre, Gallo-Roman sanctuary of Villards d'Héria, Jura, France.. Vegetation History and Archaeobotany 22, 8397.Google Scholar
Eicher, U., Siegenthaler, U., and Wegmüller, S. 1981. Pollen and oxygen isotope analyses on Late- and Post-Glacial sediments of the Tourbière de Chirens (Dauphiné, France).. Quaternary Research 15, 160170.CrossRefGoogle Scholar
Faegri, K., and Iversen, J. 1989. Textbook of Pollen Analysis. John Wiley and Sons, Chichester-New-York-Brisbane-Toronto-Singapore.Google Scholar
Feurdean, A., Spessa, A., Magyari, E.K., Willis, K.J., Veres, D., and Hickler, T. 2012. Trends in biomass burning in the Carpathian region over the last 15,000 years.. Quaternary Science Reviews 45, 111125.Google Scholar
Heiri, O., and Millet, L. 2005. Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (France).. Journal of Quaternary Science 20, 3344.Google Scholar
Heiri, O., Cremer, O., Engels, S., Hoek, W.Z., Peeters, W., and Lotter, A.F. 2007. Lateglacial summer temperatures in the Northwest European lowlands: a chironomid record from Hijkermeer, the Netherlands.. Quaternary Science Reviews 26, 24202437.CrossRefGoogle Scholar
Higuera, P.E., Peters, M.E., Brubaker, L.B., and Gavin, D.G. 2007. Understanding the origin and analysis of sediment-charcoal records with a simulation model.. Quaternary Science Reviews 26, 17901809.Google Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Brown, T.A., Kennedy, A.T., and Sheng Hu, F. 2008. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change.. PLoS ONE 3, (3), e0001744.Google Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Sheng Hu, F., and Brown, T.A. 2009. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska.. Ecological Monographs 79, 201219.Google Scholar
Huntley, B., and Birks, H.J.B. 1983. An Atlas of Past and Present Pollen Maps for Europe: 0–13,000 Years Ago. Cambridge Univ. Press, Cambridge.Google Scholar
Isarin, R.F.B., and Bohncke, S.J.P. 1999. Mean July temperatures during the Younger Dryas in Northern and Central Europe as inferred from Climate Indicator Plant Species.. Quaternary Research 51, 158173.Google Scholar
Kalis, A.J., Merkt, J., and Wunderlich, J. 2003. Environmental changes during the Holocene climatic optimum in central Europe–human impact and natural causes.. Quaternary Science Reviews 22, 3379.Google Scholar
Kaltenrieder, P., Procacci, G., Vannière, B., and Tinner, W. 2010. Vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by Lateglacial and Holocene sedimentary series from Lago della Costa (northeastern Italy).. The Holocene 20, 679695.CrossRefGoogle Scholar
Leroux, A., Bichet, V., Walter-Simonnet, A.-V., Magny, M., Adatte, T., Gauthier, E., Richard, H., and Baltzer, A. 2008. Late Glacial–Holocene sequence of Lake Saint-Point (Jura Mountains, France): detrital inputs as records of climate change and anthopic impact.. Comptes Rendus Geosciences 340, 883892.Google Scholar
Leys, B., Carcaillet, C., Dezileau, L., Ali, A.A., and Bradshaw, R.H. 2013. A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica.. Quaternary Research 79, (3), 337349.CrossRefGoogle Scholar
Long, C.J., Whitlock, C., Bartlein, P.J., and Millspaugh, S.H. 1998. A 9000-year fire history from the Oregon Coast Range, based on a high resolution charcoal study.. Canadian Journal of Forest Research 28, 774787.Google Scholar
Lotter, A.F. 1999. Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland.. Vegetation History and Archaeobotany 8, 165184.Google Scholar
Lotter, A.F., Eicher, U., Siegenthaler, U., and Birks, H.J.B. 1992. Late-glacial climatic oscillations as recorded in Swiss lake sediments.. Journal of Quaternary Science 7, 187204.Google Scholar
Lotter, A.F., Heiri, O., Brooks, S., van Leeuwen, J.F.N., Eicher, U., and Ammann, B. 2012. Rapid summer temperature changes during Termination 1a: high-resolution multi-proxy climate reconstructions from Gerzensee (Switzerland).. Quaternary Science Reviews 36, 103113.Google Scholar
Magny, M. 2001. Palaeohydrological changes as reflected by lake-level fluctuations in the Swiss Plateau, the Jura Mountains and the northern French Pre-Alps during the Last Glacial–Holocene transition: a regional synthesis.. Global and Planetary Change 30, 85101.Google Scholar
Magny, M., and Ruffaldi, P. 1995. Younger Dryas and early Holocene lake-level fluctuations in the Jura mountains, France.. Boreas 24, 155172.Google Scholar
Magny, M., de Beaulieu, J.-L., Drescher-Schneider, R., Vannière, B., Walter-Simonnet, A.-V., Millet, L., Bossuet, G., and Peyron, O. 2006a. Climatic oscillations in central Italy during the Last Glacial–Holocene transition: the record from Lake Accesa.. Journal of Quaternary Science 21, 311320.Google Scholar
Magny, M., Aalbersberg, G., and Bégeot, C. 2006b. Environmental and climatic changes in the Jura mountains (eastern France) during the Late-glacial–Holocene transition: a multi-proxy record from Lake Lautrey.. Quaternary Science Reviews 25, 414445.Google Scholar
Marlon, J.R., Bartlein, P.J., and Whitlock, C. 2006. Fire–fuel–climate linkages in the northwestern USA during the Holocene.. The Holocene 16, 10591071.CrossRefGoogle Scholar
Marlon, J.R., Bartlein, P.J., and Walsh, M.K. 2009. Wildfire responses to abrupt climate change in North America.. Proceedings of the National Academy of Sciences 106, 25192524.CrossRefGoogle ScholarPubMed
Millet, L., Rius, D., Galop, D., Heiri, O., and Brooks, S.J. 2012. Chironomid-based reconstruction of Lateglacial summer temperatures from the Ech paleolake record (French western Pyrenees).. Palaeogeography, Palaeoclimatology, Palaeoecology 315–316, 8689.Google Scholar
Olsson, F., Gaillard, M.-G., Lemdahl, G., Greisman, A., Lanos, P., Marguerie, D., Marcoux, N., Skoglund, P., and Wäglind, J. 2010. A continuous record of fire covering the last 10500 calendar years from southern Sweden. The role of climate and human activities.. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 128141.Google Scholar
Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin).. Climatic Change 63, 337350.CrossRefGoogle Scholar
Peyron, O., Bégeot, C., Brewer, S., Heiri, O., Magny, M., Millet, L., Ruffaldi, P., Van Campo, E., and Yu, G. 2005. Late-Glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids.. Quaternary Research 64, 197211.CrossRefGoogle Scholar
Power, M.J., Marlon, J., and Ortiz, N. 2008. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data.. Climate Dynamics 30, 887907.Google Scholar
Ranger, J., and Nys, C. 1994. The effect of spruce (Picea abies Karst.) on soil development: an analytical and experimental approach.. European Journal of Soil Science 45, 193204.Google Scholar
Rasmussen, S.O., Andersen, K.K., and Svensson, A.M. 2006. A new Greenland ice core chronology for the last glacial termination.. Journal of Geophysical Research 111, .Google Scholar
Reille, M. 1992. Pollen et spores d'Europe et d'Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille.Google Scholar
Reille, M. 1998. Pollen et spores d'Europe et d'Afrique du Nord. Supplément 2. Laboratoire de Botanique Historique et Palynologie, Marseille.Google Scholar
Reimer, P.J., Baillie, M.G.L., and Bard, E. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP.. Radiocarbon 51, 11111150.CrossRefGoogle Scholar
Rhodes, A.N. 1998. A method for the preparation and quantification of microscopic charcoal from terrestrial and lacustrine sediment cores.. The Holocene 8, 113117.Google Scholar
Richard, H., and Bégeot, C. 2000. Le Tardiglaciaire du massif Jurassien: bilan et perspectives de recherches.. Quaternaire 2, 145154.Google Scholar
Rius, D., Vannière, B., Galop, D., and Richard, H. 2011. Holocene fire regime changes from multiple-site sedimentary charcoal analyses in the Lourdes basin (Pyrenees, France).. Quaternary Science Reviews 30, 16961709.Google Scholar
Rius, D., Galop, D., Doyen, E., Millet, L., and Vannière, B. 2014. Biomass burning response to high-amplitude climate and vegetation changes in Southwestern France from the Last glacial to the early Holocene.. Vegetation History and Archaeobotany 10.1007/s00334-013-0422-2(in press).Google Scholar
Ruffaldi, P. 1991. Première contribution " l'étude de la végétation tardiglaciaire et holocène du Bugey: l'exemple de la tourbière de Cerin (Ain, France).. Revue de Paléobiologie 10, 137149.Google Scholar
Schneider, S.H., Semenov, S., and Patwardhan, A. 2007. Assessing key vulnerabilities and the risk from climate change. Climate Change 2007: impacts, adaptation and vulnerability.. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK., pp. 779810.Google Scholar
Stockmaar, J. 1971. Tablets with spores used in absolute pollen analysis.. Pollen et Spores 13, 615621.Google Scholar
Tinner, W., Conedera, M., Ammann, B., Gaggeler, H.W., Gedye, S., Jones, R., and Sagesser, B. 1998. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920.. The Holocene 8, 3142.Google Scholar
Tinner, W., Hubschmid, P., Wehrli, M., Ammann, B., and Conedera, M. 1999. Long-term forest fire ecology and dynamics in southern Switzerland.. Journal of Ecology 87, 273289.Google Scholar
Tinner, W., Conedera, M., Brigitta, A., and Lotter, A.F. 2005. Fire ecology north and south to the Alps since the last ice age.. The Holocene 15, 12141226.Google Scholar
Turner, R., Kelly, A., and Neils, R. 2008. A critical assessment and experimental comparison of microscopic charcoal extraction methods.. In: Fiorentino, G., Magri, D. (Eds.), Proceedings of the Third International Meeting of Anthracology, 2004. Archaeopress, Oxford., pp. 265272.Google Scholar
Umbanhowar, C.E., and McGrath, M.J. 1998. Experimental production and analysis of microscopic charcoal from wood, leaves and grasses.. The Holocene 8, 341346.Google Scholar
Vannière, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., and Magny, M. 2008. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy).. Quaternary Science Reviews 277, 11811196.Google Scholar
Vannière, B., Power, M.J., Roberts, N., Tinner, W., Carrión, J., Magny, M., and Bartlein, P. 2011. Circum-Mediterranean fire activity and climate changes during the mid Holocene environmental transition (8500–2500 cal yr BP).. The Holocene 21, (1), 5373.Google Scholar
Vescovi, E., Ammann, B., Ravazzi, C., and Tinner, W. 2010. A new Late-glacial and Holocene record of vegetation and fire history from Lago del Greppo, northern Apennines, Italy.. Vegetation History and Archaeobotany 19, 219233.Google Scholar
Whitlock, C., and Larsen, C. 2001. Charcoal as a Fire Proxy.. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environnement Change Using Lake Sediments. Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht., pp. 7597.Google Scholar
Whitlock, C., and Millspaugh, S.H. 1996. Testing assumptions of fire history studies: an examination of modern charcoal accumulation in Yellowstone National Park.. The Holocene 6, 715.Google Scholar
Whitlock, C., Higuera, P.E., McWethy, D.B., and Briles, C.E. 2010. Paleoecological perspectives on fire ecology: revisiting the fire-regime concept.. The Open Ecology Journal 3, 623.Google Scholar
Zolitschka, B. 1998. A 14000 year sediment yield record from western Germany based on annually laminated lake sediments.. Geomorphology 22, 117.CrossRefGoogle Scholar