Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T05:38:14.617Z Has data issue: false hasContentIssue false

Climate variability over the last 9900 cal yr BP from a swamp forest pollen record along the semiarid coast of Chile

Published online by Cambridge University Press:  20 January 2017

Antonio Maldonado*
Affiliation:
Centro de Estudios Avanzados en Zonas Aridas (CEAZA), Universidad de La Serena, Casilla 599, La Serena, Chile
Carolina Villagrán
Affiliation:
Laboratorio de Sistematica y Ecología Vegetal, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Ñuñoa, Santiago, Chile
*
Corresponding author. Fax: +56 51 334741. E-mail address:amaldonado@ceaza.cl (A. Maldonado).

Abstract

We present a fossil pollen analysis from a swamp forest in the semiarid coast of Chile (32°05′S; 71°30′W), at the northern influence zone of southern westerly wind belt. A ∼10,000 cal yr BP (calendar years before 1950) palynological sequence indicates a humid phase characterized by dense swamp forest taxa dated between ∼9900 and 8700 cal yr BP. The presence of pollen-starved sediments with only scant evidence for semiarid vegetation indicates that extreme aridity ensued until ∼5700 cal yr BP. The swamp forest recovered slowly afterwards, helped by a significant increase in moisture at ∼4200 cal yr BP. A new swamp forest contraction suggests that another slightly less intense drought occurred between ∼3000 and 2200 cal yr BP. The swamp forest expansion begins again at ∼2200 cal yr BP, punctuated by a highly variable climate. Comparisons between the record presented here with other records across the region imply major variations in the extent of the southern westerlies during the Holocene. This variability could have been caused either by latitudinal displacements from the present mean position of southern westerlies wind belt or by changes in the intensity of the South Pacific Subtropical Anticyclone, both of which affect winter precipitation in the region.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Wolfe, B.B., Wolfe, A.P., Seltzer, G.O., Aravena, R., Mark, B.G., Polissar, P.J., Rodbell, D.T., Rowe, H.D., and Vuille, M. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 123138.Google Scholar
Aceituno, P. On the functioning of the Southern oscillation in the South American sector. Part I. Surface climate. Monthly Weather Review 116, (1988). 505523.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. The history of South American tropical precipitation for the past 25,000 years. Science 291, (2001). 640643.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., and Rylander, K.A. A 22,000-year record of monsoon precipitation from Northern Chile's Atacama Desert. Science 289, (2000). 15421546.Google Scholar
Carré, M., Bentaleb, I., Fontugne, M., and Lavallé, D. Strong El Niño events during the early Holocene: stable isotope evidence from Peruvian sea shells. The Holocene 15, (2005). 4247.CrossRefGoogle Scholar
Clement, A.C., Seager, R., and Cane, M.A. Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. Paleoceanography 15, (2000). 731737.Google Scholar
Earle, L.R., Warner, B.G., and Aravena, R. Rapid development of an unusual peat-accumulating ecosystem in the Chilean Altiplano. Quaternary Research 59, (2003). 211.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Blackwell Scientific Publication, Google Scholar
Fuenzalida, P. Biogeografía. CORFO Geografía Económica de Chile. (1965). Editorial Universitaria, S.A., Santiago, Chile.Google Scholar
Garreaud, R., and Aceituno, P. Atmospheric circulation over South America: mean features and variability. Young, K. The Physical Geography of South America. (2002). Oxford University Press, Google Scholar
Grimm, E. CONISS: a fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geociences (1987). 1335.Google Scholar
Grosjean, M. Paleohydrology of the Laguna Lejia (North Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeoraphy, Palaeclimatology, Palaeoecology 109, (1994). 89100.CrossRefGoogle Scholar
Grosjean, M. Mid-Holocene climate in the South-Central Andes: humid or dry?. Science 292, (2001). 2391a CrossRefGoogle ScholarPubMed
Grosjean, M., Valero-Garcés, B.L., Geyh, M.A., Messerli, B., Schotterer, U., Schreier, H., and Kelts, K. Mid- and late-Holocene limnogeology of Laguna del Negro Francisco, northern Chile, and its palaeoclimatic implications. The Holocene 7, (1997). 151159.Google Scholar
Grosjean, M., Nuñez, L., Cartajena, I., and Messerli, B. Mid-Holocene climate and culture change in the Atacama Desert, Northern Chile. Quaternary Research 48, (1997). 239246.CrossRefGoogle Scholar
Grosjean, M., Geyh, M.A., Messerli, B., Schreier, H., and Veit, H. A late-Holocene (<2600 BP) glacial advance in the south-central Andes (29°S), northern Chile. The Holocene 8, (1998). 473479.Google Scholar
Grosjean, M., Cartajena, I., Geyh, M.A., and Nuñez, L. From proxy data to paleoclimate interpretation: the mid-Holocene paradoxa of the Atacama Desert, Northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 247258.Google Scholar
Grove, M.J., Baker, P.A., Cross, S.L., Rigsby, C.A., and Seltzer, G.O. Application of strontium isotopes to understanding the hydrology and paleohydrology of the Altiplano, Bolivia-Peru. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 281297.Google Scholar
Hervé, F., Encinas, A., Villa-Martínez, R., Sven, N., Finger, K., and Peterson, D. Registro sedimentológico de la transgresión marina del Holoceno Medio en el área de Algarrobo (33°22′S), Chile Central. Implicaciones tectonicas y paleoecológicas. 10° Congreso Geológico Chileno. (2003). Universidad de Concepción, Concepción, Chile.Google Scholar
Heusser, C.J. Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 107127.Google Scholar
Jenny, B., Valero-Garcés, B.L., Urrutia, R., Kelts, K., Veit, H., Appleby, P.G., and Geyh, M. Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years: the Laguna Aculeo record (33°50′S). Quaternary International 87, (2002). 318.Google Scholar
Jenny, B., Valero-Garcés, B.L., Villa-Martínez, R., Urrutia, R., Geyh, M.A., and Veit, H. Early to mid-holocene aridity in Central Chile and the Southern Westerlies: The Laguna Aculeo record (34°S). Quaternary Reseach 58, (2002). 160170.Google Scholar
Kim, J.-H., Schneider, R.R., Hebbeln, D., Müller, P.J., and Wefer, G. Last deglacial sea-surface temperature evolution in the Southeast Pacific compared to climate changes on the South American continent. Quaternary Science Reviews 21, (2002). 20852097.Google Scholar
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G. Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters 185, (2001). 369382.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., and Matthei, O. A vegetation history from the arid prepuna of northern Chile (22–23°S) over the last 13,500 years. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 223246.Google Scholar
Maldonado, A., (1999). “Historia de los bosques pantanosos de la costa de Los Vilos (IV Region, Chile) durante el Holoceno medio y tardío. Unpublished Magíster thesis, Facultad de Ciencias, Universidad de Chile.Google Scholar
Maldonado, A., and Villagrán, C. Paleoenvironmental changes in the semiarid coast of Chile (∼ 32°S) during the last 6200 cal years inferred from a swamp-forest pollen record. Quaternary Research 58, (2002). 130138.Google Scholar
Maldonado, A., Jackson, D., (2005). Holocene climate change and human settlement on the semiarid coast of Chile (32°S). Holocene environmental catastrophes in South America: from the lowlands to the Andes. Abstract Volume and field guide. Miramar-Córdoba, 11–17 March 2005. Third Joint Meeting of ICSU Dark Nature and IGCP 490.Google Scholar
Maldonado, A.J., Betancourt, J.L., Latorre, C., and Villagrán, C. Pollen analyses from a 50,000-Yr rodent midden series in the Southern Atacama Desert (25°39′S). Journal of Quaternary Science 20, (2005). 493507.Google Scholar
Marchant, M., Hebbeln, D., and Wefer, G. High resolution planktic foraminiferal record of the last 13,300 years from the upwelling area off Chile. Marine Geology 161, (1999). 115128.Google Scholar
Miller, A. The climate of Chile. Schwerdtfeger, W. Climates of Central and South America. (1976). Elsevier Scientific Publishing Company, Amsterdam. 113145.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. Variability of El Niño/Southern oscillation activity at millennial timescales during the Holocene epoch. Nature 420, (2002). 162165.CrossRefGoogle ScholarPubMed
Ota, Y., and Paskoff, R. Holocene deposits on the Coast of North-Central Chile: radiocarbon ages and implications for coastal changes. Revista Geológica de Chile 20, (1993). 2532.Google Scholar
Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.C., and Seltzer, G.O. A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 259279.CrossRefGoogle Scholar
Quade, J., Rech, J.A., Betancourt, J.L., and Latorre, C. Mid-Holocene climate in the South-Central Andes: humid or dry? Response. Science 292, (2001). 2391a Google Scholar
Ramírez, C., Ferriere, F., and Figueroa, H. Estudio fitosociológico de los bosques pantanosos templados del sur de Chile. Revista Chilena de Historia Natural 56, (1983). 1126.Google Scholar
Ramírez, C., San Martín, C., and San Martín, J. Estructura florística de los bosques de Chile sur-central. Armesto, J., Villagrán, C., and Kalin, M. Ecología de los bosques nativos de Chile. (1995). Editorial Universitaria, Santiago. 215234.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwars, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Riedinger, M.A., Steinitz-Kannan, M., Last, W.M., and Brenner, M. A 6100 14C yr record of El Niño activity from the Galápagos Islands. Journal of Paleolimnology 27, (2002). 17.Google Scholar
Rigsby, C.A., Baker, P.A., and Aldenderfer, M.S. Fluvial history of the Rio Ilave valley, Peru, and its relationship to climate and human history. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 165185.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., and Newman, J.H. An ∼ 15,000-year record of El Niño-Driven Alluviation in Southwestern Ecuador. Science 283, (1999). 516520.CrossRefGoogle ScholarPubMed
San Martín, J., Troncoso, A., and Ramírez, C. Estudio fitosociológico de los bosques pantanosos nativos de la Cordillera de la Costa en Chile Central. Bosque 9, (1988). 1733.CrossRefGoogle Scholar
Sandweiss, D.H. Terminal Pleistocene through Mid-Holocene archaeological sites as paleoclimatic archives for the Peruvian coast. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 2340.Google Scholar
Sandweiss, D.H., Richardson, J.B. III, Reitz, E.J., Rollins, H.B., and Maasch, K.A. Geoarchaeological evidence from Peru for a 5000 Years BP Onset of El Niño. Science 273, (1996). 15311533.Google Scholar
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson, J.B. III, Rollins, H.B., and Clement, A. Variation in Holocene El Niño frequencies: Climate records and cultural consequences in ancient Peru. Geology 29, (2001). 603606.Google Scholar
Servant, M., and Servant-Vildary, S. Holocene precipitation and atmospheric changes inferred from river paleowetlands in the Bolivian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 187206.CrossRefGoogle Scholar
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, (1971). 615621.Google Scholar
Tapia, P.M., Fritz, S.C., Baker, P.A., Seltzer, G.O., and Dunbar, R.B. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 139164.Google Scholar
Trenberth, K.E. Spatial and temporal variations of the Southern Oscillation. Quarterly Journal of the Royal Meteorological Society 102, (1976). 639653.Google Scholar
VanHusen, C., (1967). “Klimagliederung in Chile auf der Basis von Häufigkeitsverteilungen der Niederschlagssummen”. Freiburger Geographischa Hefte 4, 0–113. Universitat Freiburg I, . BR.Google Scholar
Varela, J. Geología del Cuaternario del área de los Vilos-Ensenada El Negro (IV Región) y su relación con la existencia del bosque ''relicto'' de Quebrada Quereo. Congreso Internacional de Zonas Aridas y Semiáridas. (1981). 1730. 33, La Serena Google Scholar
Veit, H. Southern Westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, Northern Chile (27–33°S). Palaeogeography, Palaeoclimatology, Palaeoecology 123, (1996). 107119.Google Scholar
Villagrán, C. Estructura floristica e historia del bosque pantanoso de Quintero (Chile, V Región) y su relación con las comunidades relictuales de Chile Central y Norte Chico. Actas del III Congreso Geológico (1982). 377402.Google Scholar
Villagrán, C., and Varela, J. Palynological evidence for increased aridity on the Central Chilean Coast during the Holocene. Quaternary Research 34, (1990). 198207.CrossRefGoogle Scholar
Villa-Martínez, R., and Villagrán, C. Historia de la vegetación de bosques pantanosos de la costa de Chile central durante el Holoceno medio y tardío. Revista Chilena de Historia Natural 70, (1997). 391401.Google Scholar
Villa-Martínez, R., Villagrán, C., and Jenny, B. The last 7500 cal yr BP of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quaternary Reseach 60, (2003). 284293.Google Scholar
Villa-Martínez, R., Villagrán, C., and Jenny, B. Pollen evidence for late-Holocene climatic variability at Laguna de Aculeo, Central Chile (lat. 34°S). The Holocene 14, (2004). 361367.Google Scholar