Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T05:58:36.943Z Has data issue: false hasContentIssue false

Comparative 14C and OSL dating of loess-paleosol sequences to evaluate post-depositional contamination of n-alkane biomarkers

Published online by Cambridge University Press:  06 February 2017

Michael Zech*
Affiliation:
Institute of Agronomy and Nutritional Sciences, Soil Biogeochemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany Department of Geomorphology and Department of Soil Physics, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
Sebastian Kreutzer
Affiliation:
Department of Geomorphology and Department of Soil Physics, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany Department of Geography, Justus-Liebig-University Giessen, Senckenbergstr. 1, 35390 Giessen, Germany
Roland Zech
Affiliation:
Geological Institute, Biogeoscience Group, ETH Zurich, Sonneggstr. 5, 8092 Zurich, Switzerland
Tomasz Goslar
Affiliation:
Poznan Radiocarbon Laboratory, ul. Rubiez 46, 61-612 Poznan, Poland
Sascha Meszner
Affiliation:
Department of Geography, Chair of Physical Geography, Dresden University of Technology, Helmholtzstr. 10, 01069 Dresden, Germany
Cameron McIntyre
Affiliation:
Geological Institute, Biogeoscience Group, ETH Zurich, Sonneggstr. 5, 8092 Zurich, Switzerland
Christoph Häggi
Affiliation:
Geological Institute, Biogeoscience Group, ETH Zurich, Sonneggstr. 5, 8092 Zurich, Switzerland
Timothy Eglinton
Affiliation:
Geological Institute, Biogeoscience Group, ETH Zurich, Sonneggstr. 5, 8092 Zurich, Switzerland
Dominik Faust
Affiliation:
Department of Geography, Chair of Physical Geography, Dresden University of Technology, Helmholtzstr. 10, 01069 Dresden, Germany
Markus Fuchs
Affiliation:
Department of Geography, Justus-Liebig-University Giessen, Senckenbergstr. 1, 35390 Giessen, Germany
*
*Corresponding author at: Institute of Agronomy and Nutritional Sciences, Soil Biogeochemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany. E-mail address: michael_zech@gmx.de (M. Zech).

Abstract

There is an ongoing controversial discussion as to whether n-alkane lipid biomarkers—and organic matter of loess in general—reflect a synsedimentary paleoenvironmental/climate signal or whether they are significantly affected by postdepositional “contamination,” for example related to root and rhizomicrobial activity. In order to address this issue at our study site (the Middle to Late Weichselian loess-paleosol sequence Gleina in Saxony, Germany), we determined and compared radiocarbon ages of bulk n-alkanes and sedimentation ages, as assessed by optically stimulated luminescence (OSL) dating. The bulk n-alkanes of the four dated samples yielded calibrated 14C ages ranging from 24.1 to 49.7 cal ka BP (95.4% probability ranges). While the three uppermost n-alkane samples are well within the range or even slightly older than the OSL-inferred sedimentation ages, the lowermost n-alkane sample is slightly younger than the OSL ages. There is hence little or no evidence at our study site for n-alkanes in loess-paleosol sequences being significantly “contaminated” by deep subsoil rooting or microbial processes. We propose a 14C isotope mass balance calculation for estimating such contaminations quantitatively. Radiocarbon dating of bulk n-alkanes might have great potential for Quaternary research, and we encourage further comparative 14C and OSL studies.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Department of Geography, Chair of Landscape- and Geoecology, Faculty of Environmental Sciences, Dresden University of Technology, Helmholtzstr. 10, 01062 Dresden, Germany.
2 Present address: IRAMAT-CRP2A, Université Bordeaux Montaigne, Maison de l’Archéologie, Esplanade des Antilles, 33607 Pessac Cedex, France.
3 Present address: Institute of Geography and Oeschger Centre for Climate Change Research, Biogeochemistry and Paleoclimatology Group, University of Bern, Hallerstr. 12, 3012 Bern, Switzerland.
4 Present address: Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G750QF, Glasgow, United Kingdom.
5 Present address: MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str., 28359 Bremen, Germany.

References

Antoine, P., Rousseau, D.-D., Degeai, J.-P., Moine, O., Lagroix, F., Kreutzer, S., Fuchs, M., et al., 2013. High-resolution record of the environmental response to climatic variations during the last interglacial-glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quaternary Science Reviews 67, 1738.CrossRefGoogle Scholar
Bai, Y., Fang, X., Nie, J., Wang, Y., Wu, F., 2009. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 161169.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Buggle, B., Wiesenberg, G.L.B., Glaser, B., 2010. Is there a possibility to correct fossil n-alkane data for postsedimentary alteration effects? Applied Geochemistry 25, 947957.Google Scholar
Eglinton, G., Hamilton, R., 1967. Leaf epicuticular waxes. Science 156, 13221334.CrossRefGoogle ScholarPubMed
Eglinton, T., Eglinton, G., 2008. Molecular proxies for paleoclimatology. Earth and Planetary Science Letters 275, 116.CrossRefGoogle Scholar
Frechen, M., 2011. Loess in Eurasia. Quaternary International 234, 13.Google Scholar
Fuchs, M., Straub, J., Zöller, L., 2005. Residual luminescence signals of recent river flood sediments: a comparison between quartz and feldspar of fine- and coarse-grain sediments. Ancient TL 23, 2530.Google Scholar
Gocke, M., Kuzyakov, Y., Wiesenberg, G.L.B., 2010. Rhizoliths in loess – evidence for post-sedimentary incorporation of root-derived organic matter in terrestrial sediments as assessed from molecular proxies. Organic Geochemistry 41, 11981206.CrossRefGoogle Scholar
Gocke, M., Kuzyakov, Y., Wiesenberg, G.L.B., 2013. Differentiation of plant derived organic matter in soil, loess and rhizoliths based on n-alkane molecular proxies. Biogeochemistry 112, 2340.Google Scholar
Gocke, M., Peth, S., Wiesenberg, G., 2014. Lateral and depth variation of loess organic matter overprint related to rhizoliths—revealed by lipid molecular proxies and X-ray tomography. Catena 112, 7285.CrossRefGoogle Scholar
Gocke, M., Wiesenberg, G.L.B., 2013. Interactive comment on “On the stratigraphic integrity of leaf-wax biomarkers in loess-paleosols” by C. Häggi et al. Biogeosciences Discussions 10, C7498C7501.Google Scholar
Grimalt, J., Albaigés, J., 1987. Sources and occurrence of C12-C22 n-alkane distributions with even carbon-numbered preference in sedimentary environments. Geochimica et Cosmochimica Acta 51, 13791384.Google Scholar
Haas, M., Bliedtner, M., Borodynkin, I., Salazar, G., Szidat, S., Eglinton, T., Zech, R., 2016. Radiocarbon dating of leaf waxes in the loess-paleosol sequence Kurtak, Central Siberia. Radiocarbon (in press).Google Scholar
Haase, G., Lieberoth, I., Ruske, R., 1970. Sedimente und Paläoböden im Lößgebiet. In Richter, H., Haase, G., Lieberoth, I., Ruske, R. (Eds.), Periglazial - Löß - Paläolithikum im Jungpleistozän der Deutschen Demokratischen Republik. VEB Hermann Haack, Gotha, Germany, pp 99212.Google Scholar
Häggi, C., Zech, R., McIntyre, C., Zech, M., Eglinton, T.I., 2014. On the stratigraphic integrity of leaf-wax biomarkers in loess paleosols. Biogeosciences 11, 24552463.Google Scholar
Huang, Y., Li, B., Bryant, C., Bol, R., Eglinton, G., 1999. Radiocarbon dating of aliphatic hydrocarbons: a new approach for dating passive-fraction carbon in soil horizons. Soil Science Society of America Journal 63, 11811187.CrossRefGoogle Scholar
Kadereit, A., Kind, C.-J., Wagner, G.A., 2013. The chronological position of the Lohne Soil in the Nussloch loess section – re-evaluation for a European loess-marker horizon. Quaternary Science Reviews 59, 6786.Google Scholar
Kirkels, F., Jansen, B., Kalbitz, K., 2013. Consistency of plant-specific n-alkane patterns in plaggen ecosystems: a review. Holocene 23, 13551368.CrossRefGoogle Scholar
Kolattukudy, P.E., 1976. Biochemistry of plant waxes. In Kolattukudy, P.E. (Ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, pp 290349.Google Scholar
Kreutzer, S., Fuchs, M., Meszner, S., Faust, D., 2012. OSL chronostratigraphy of a loess-palaeosol sequence in Saxony/Germany using quartz of different grain sizes. Quaternary Geochronology 10, 102109.CrossRefGoogle Scholar
Kuhn, T., Krull, E., Bowater, A., Grice, K., Gleixner, G., 2010. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry 41, 8895.CrossRefGoogle Scholar
Kusch, S., Rethemeyer, J., Schefuß, E., Mollenhauer, G., 2010. Controls on the age of vascular plant biomarkers in Black Sea sediments. Geochimica et Cosmochimica Acta 74, 70317047.CrossRefGoogle Scholar
Lai, Z., Zöller, L., Fuchs, M., Brückner, H., 2008. Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiation Measurements 43, 767770.Google Scholar
Levin, I., Kromer, B., Schoch-Fischer, H., Bruns, M., Münnich, M., Berdau, D., Vogel, J.C., Münnich, K.O., 1985. 25 Years of tropospheric 14C observations in Central Europe. Radiocarbon 27, 119.Google Scholar
Lichtfouse, E., Eglinton, T., 1995. 13C and 14C evidence of pollution of a soil by fossil fuel and reconstruction of the composition of the pollutant. Organic Geochemistry 23, 969973.CrossRefGoogle Scholar
Lieberoth, I., 1963. Lößsedimentation und Bodenbildung während des Pleistozäns in Sachsen. Geologie 12, 149187.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. http://dx.doi.org/10.1029/2004PA001071.Google Scholar
Liu, W., Huang, Y., 2005. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Organic Geochemistry 36, 851860.Google Scholar
Maffei, M., 1996. Chemotaxonomic significance of leaf wax alkanes in the Gramineae. Biochemical Systematics and Ecology 24, 5364.Google Scholar
Marković, S.B., Catto, N., Smalley, I.J., Zöller, L., 2011. The second Loessfest (2009). Quaternary International 240, 13.CrossRefGoogle Scholar
Marković, S.B., Stevens, T., Kukla, G.J., Hambach, U., Fitzsimmons, K.E., Gibbard, P., Buggle, B., et al., 2015. Danube loess stratigraphy—towards a pan-European loess stratigraphic model. Earth-Science Reviews 148, 228258.Google Scholar
Mauz, B., Packman, S.C., Lang, A., 2006. The alpha effectiveness in silt-sized quartz: new data obtained by single and multiple aliquot protocols. Ancient TL 24, 4752.Google Scholar
McDuffee, K., Timothy, E., Sessions, A., Sylva, S., Wagner, T., Hayes, J., 2004. Rapid analysis, of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments. Geochemistry, Geophysics, Geosystems 5, Q10004. http://dx.doi.org/10.1029/2004GC000772.Google Scholar
Meszner, S., Fuchs, M., Faust, D., 2011. Loess-Palaeosol-Sequences from the loess area of Saxony (Germany). E&G Quaternary Science Journal 60, 4765.Google Scholar
Meszner, S., Kreutzer, S., Fuchs, M., Faust, D., 2013. Late Pleistocene landscape dynamics in Saxony, Germany: paleoenvironmental reconstruction using loess-paleosol sequences. Quaternary International 296, 94107.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Nguyen Tu, T., Egasse, C., Zeller, B., Bardoux, G., Biron, P., Ponge, J.-F., David, B., Derenne, S., 2011. Early degradation of plant alkanes in soils: a litterbag experiment using 13C-labelled leaves. Soil Biology and Biochemistry 43, 22222228.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Pustovoytov, K., Terhorst, B., 2004. An isotopic study of a late Quaternary loess-paleosol sequence in SW Germany. Revista Mexicana de Ciencias Geológicas 21, 8893.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Schäfer, I., Bliedtner, M., Wolf, D., Faust, D., Zech, R., 2016. Evidence for humid conditions during the last glacial from leaf wax patterns in the loess-paleosol sequence El Paraíso, Central Spain. Quaternary International 407, 6473.CrossRefGoogle Scholar
Schäfer, I., Lanny, V., Franke, J., Eglinton, T., Zech, M., Vysloužilová, B., Zech, R., 2016. Leaf waxes in litter and topsoils along a European transect. Soil 2, 551564.Google Scholar
Shah, S.R., Pearson, A., 2007. Ultra-microscale (5–25μgC) analysis of individual lipids by 14C AMS: assessment and correction for sample processing blanks. Radiocarbon 49, 6982.Google Scholar
Stevens, T., Marković, S., Zech, M., Hambach, U., Sümegi, P., 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial–interglacial cycle. Quaternary Science Reviews 30, 662681.Google Scholar
Wiesenberg, G., 2012. Interactive comment on “Technical note: n-alkane lipid biomarkers in loess: post-sedimentary or syn-sedimentary?” by M. Zech et al., Biogeosciences Discussions 9, C3541C3545.Google Scholar
Wiesenberg, G.L.B., Gocke, M., 2013. Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol sequence—comment to the paper published by Zech et al ., Quaternary Research 78, 2012, 226235. Quaternary Research 79, 304–305.Google Scholar
Wiesenberg, G.L.B., Lehndorff, E., Schwark, L., 2009. Thermal degradation of rye and maize straw: lipid pattern changes as a function of temperature. Organic Geochemistry 40, 167174.Google Scholar
Xie, S., Chen, F., Wang, Z., Wang, H., Gu, Y., Huang, Y., 2003. Lipid distributions in loess-paleosol sequences from northwest China. Organic Geochemistry 34, 10711079.CrossRefGoogle Scholar
Xie, S., Wang, Z., Wang, H., Chen, F., An, C., 2002. The occurrence of a grassy vegetation over the Chinese Loess Plateau since the last interglacial: the molecular fossil record. Science in China, Series D 45, 5362.Google Scholar
Zech, M., Andreev, A., Zech, R., Müller, S., Hambach, U., Frechen, M., Zech, W., 2010. Quaternary vegetation changes derived from a loess-like permafrost palaeosol sequence in northeast Siberia using alkane biomarker and pollen analyses. Boreas 39, 540550.Google Scholar
Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., et al., 2009. Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: problems and possible solutions, potential and limitations. E&G Quaternary Science Journal 58, 148155.Google Scholar
Zech, M., Krause, T., Meszner, S., Faust, D., 2013a. Incorrect when uncorrected: reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences – a case study from the Saxonian loess region, Germany. Quaternary International 296, 108116.Google Scholar
Zech, M., Kreutzer, S., Goslar, T., Meszner, S., Krause, T., Faust, D., Fuchs, M., 2012a. Technical note: n-alkane lipid biomarkers in loess: post-sedimentary or syn-sedimentary? Biogeosciences Discussions 9, 98759896. http://dx.doi.org/10.5194/bgd-9-9875-2012.Google Scholar
Zech, M., Pedentchouk, N., Buggle, B., Leiber, K., Kalbitz, K., Markovic, S., Glaser, B., 2011a. Effect of leaf litter degradation and seasonality on D/H isotope ratios of n-alkane biomarkers. Geochimica et Cosmochimica Acta 75, 49174928.Google Scholar
Zech, M., Rass, S., Buggle, B., Löscher, M., Zöller, L., 2012b. Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol sequence, Germany, using n-alkane biomarkers. Quaternary Research 78, 226235.Google Scholar
Zech, M., Tuthorn, M., Detsch, F., Rozanski, K., Zech, R., Zöller, L., Zech, W., Glaser, B., 2013c. A 220 ka terrestrial δ18O and deuterium excess biomarker record from an eolian permafrost paleosol sequence, NE-Siberia. Chemical Geology 360–361, 220230.Google Scholar
Zech, M., Zech, R., Buggle, B., Zöller, L., 2011b. Novel methodological approaches in loess research – interrogating biomarkers and compound-specific stable isotopes. E&G Quaternary Science Journal 60, 170187.Google Scholar
Zech, R., Zech, M., Marković, S., Hambach, U., Huang, Y., 2013b. Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess-paleosol sequence Crvenka, Northern Serbia. Palaeogeography, Palaeoclimatology, Palaeoecology 387, 165175.Google Scholar
Zhang, Z., Zhao, M., Eglinton, G., Lu, H., Huang, C., 2006. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quaternary Science Reviews 20, 575594.Google Scholar
Zöller, L., Faust, D., 2009. Lower latitudes loess—dust transport past and present. Quaternary International 196, 13.Google Scholar
Zöller, L., Pernicka, E., 1989. A note on overcounting in alpha-counters and its elimination. Ancient TL 7, 1114.Google Scholar
Supplementary material: PDF

Zech supplementary material

Zech supplementary material

Download Zech supplementary material(PDF)
PDF 929.3 KB