Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T19:02:07.340Z Has data issue: false hasContentIssue false

Control of wind strength and frequency in the Aral Sea basin during the late Holocene

Published online by Cambridge University Press:  20 January 2017

Philippe Sorrel*
Affiliation:
Sektion 3.3, GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany
Hedi Oberhänsli
Affiliation:
Sektion 3.3, GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany
Nikolaus Boroffka
Affiliation:
Sektion 3.3, GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany
Danis Nourgaliev
Affiliation:
Faculty of Geology, Kazan State University, Kazan, Russia
Peter Dulski
Affiliation:
Sektion 3.3, GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany
Ursula Röhl
Affiliation:
DFG Research Center for Ocean Margins (RCOM), Bremen University, Leobener Strasse, D-28359 Bremen, Germany
*
*Corresponding author. Fax: +33 231 565 757. E-mail address:philippe.sorrel@unicaen.fr (P. Sorrel).

Abstract

Changing content of detrital input in laminated sediments traced by XRF scanning and microfacies analyses reflect prominent variations in sedimentation processes in the Aral Sea. A high-resolution record of titanium from a core retrieved in the northwestern Large Aral Sea allows a continuous reconstruction of wind strength and frequency in western Central Asia for the past 1500 yr. During AD 450–700, AD 1210–1265, AD 1350–1750 and AD 1800–1975, detrital inputs (bearing titanium) are high, documenting an enhanced early spring atmospheric circulation associated with an increase in intensity of the Siberian High pressure system over Central Asia. In contrast, lower titanium content during AD 1750–1800 and AD 1980–1985 reflects a diminished influence of the Siberian High during early spring with a reduced atmospheric circulation. A moderate circulation characterizes the time period AD 700–1150. Unprecedented weakened atmospheric circulation over western Central Asia are inferred during ca. AD 1180–1210 and AD 1265–1310 with a considerable decrease in dust storm frequency, sedimentation rates, lamination thickness and detrital inputs (screened at 40-μm resolution). Our results are concurrent with changes in the intensity of the Siberian High during the past 1400 yr as reported in the GISP2 Ice Core from Greenland.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Laboratoire Morphodynamique continentale et côtière (M2C), (UMR 6143 CNRS), Université de Caen Basse-Normandie, 24 rue des Tilleuls, F-14000 Caen, France.

References

Aizen, E.M., Aizen, V.B., Melack, J.M., Nakamura, T., and Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology 21, (2001). 535556.CrossRefGoogle Scholar
Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A., and Zielinski, G.A. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, (1993). 527529.Google Scholar
Austin, P., Mackay, A., Palagushkina, O., and Leng, M. A high-resolution diatom-inferred palaeoconductivity and lake level record of the Aral Sea for the last 1600 yr. Quaternary Research 67, (2007). 383393.Google Scholar
Barlow, M.H., and Cullen, B. Drought in Central and southwest Asia: La Niña, the warm pool and the Indian precipitation. Journal of Climate 15, 7 (2002). 697700.Google Scholar
Bolle, M.P., and Adatte, T. Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Minerals 36, 2 (2001). 249261.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302136.Google Scholar
Bradley, R.S. 1000 years of climate change. Science 288, (2000). 13531354.Google Scholar
Bradley, R.S., (2003). Climate of the last Millenium. Holocene Working Group Workshop, Bjerknes Centre for Climate Research, August 2003.Google Scholar
Briffa, K.R. Annual climate variability in the Holocene: interpreting the message of ancient trees. Quaternary Science Reviews 19, (2000). 87105.Google Scholar
Chub, V.E. Estimation of aerosol influence on climatic characteristics of the Aral Sea basin (Otzenka vliyaniya aerozolei na klimaticheskie kharakteristiki baseina Aral'skogo moray). Problems of Desert Development 3–4, (1998). 5055. (in Russian) Google Scholar
Clark, M.P., Serreze, M.C., and Robinson, D.A. Atmospheric controls on Eurasian snow extent. International Journal of Climatology 19, (1999). 2740.Google Scholar
Cook, E.R., Esper, J., and D'Arrigo, R.D. Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. Quaternary Science Reviews 23, (2004). 20632074.Google Scholar
Crowley, T.J. Causes of climate change over the past 1000 years. Science 289, (2000). 270277.Google Scholar
Demory, F., Oberhänsli, H., Nowaczyk, N.R., Gottschalk, M., Wirth, R., and Naumann, R. Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism. Global and Planetary Change 46, (2005). 145166.Google Scholar
Druyan, L.M., and Rind, D. Implications of climate change on a regional scale. Graber, M., Cohen, A., Magaritz, M. Proceedings of the International Workshop on Regional Implications of Future Climate Change, September 1993 vol. 311, (1991). 7578.Google Scholar
Duan, A.M., and Wu, G.X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dynamics 24, (2005). 793807.Google Scholar
Friedrich, J., and Oberhänsli, H. Hydrochemical properties of the Aral Sea water in summer 2002. Journal of Marine Systems 47, (2004). 7788.Google Scholar
Galaeva, O.S. On the monitoring of carrying out of sandy salty aerosol from drained part of bottom of the Aral Sea (K monitoringu vinosa peschanih I solevih aerosolei s visohshego dna Aral'skogo moray). Problems of Desert Development 3–4, (1998). 1721. (in Russian) Google Scholar
Gruza, G.V., Ran'kova, E.Ya., Kleschenko, L.K., and Aristova, L.N. Relationship between climatic anomalies on territory of Russia and phenomena El Nino-South Oscillation. Meteorology and Hydrology 5, (1999). 3251. (in Russian) Google Scholar
Heim, C., (2005). Die Geochemische Zusammensetzung der Sedimente im Aralsee und Sedimentationsprozesse während der letzten 100 Jahre. Diploma thesis, Alfred-Wegener-Institut für Polar-und Meeresforschung, Bremerhaven. 89 pp.Google Scholar
Jansen, J.H.F., van der Gaast, S.J., Koster, B., and Vaars, A. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Marine Geology 151, (1998). 143153.Google Scholar
Khan, V.M., Vilfand, R.M., and Zavialov, P. Long-term variability of air temperature in the Aral sea region. Journal of Marine Systems 47, (2004). 2533.CrossRefGoogle Scholar
Létolle, R., and Mainguet, M. Aral. (1993). Springer Verlag, Paris. 358 pp.Google Scholar
Lioubimtseva, E. Arid environments. Shahgedanova, M. Physical Geography of Northern Eurasia. (2002). Oxford University Press, Oxford. 571 pp.Google Scholar
Lioubimtseva, E., Cole, R., Adams, J.M., and Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments 62, (2005). 285308.CrossRefGoogle Scholar
Mainguet, M., Létolle, R., and Dumay, F. Le système régional d'action éolienne (SRAE) du bassin de l'Aral (Kazakhstan, Ouzbékistan et Turkménistan). C.R. Geosciences 334, (2002). 475480.Google Scholar
Mann, M.E., and Jones, P.D. Global surface temperatures over the past two millennia. Geophysical Research Letters 30, 15 (2003). 1820 http://dx.doi.org/10.1029/2003GL017814, 2003Google Scholar
Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M.C., Bloomfield, P., Bond, G.C., Alley, R.B., Gow, A.J., Grootes, P.M., Meese, D.A., Ram, M., Taylor, K.C., and Wumkes, W. Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 261, (1994). 195197.Google Scholar
Meeker, L.D., and Mayewski, P.A. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. The Holocene 12, 3 (2002). 257266.Google Scholar
Meese, P.M., Alley, R.B., Gow, A.J., Grootes, P., Mayewski, P.A., Ram, D.A., Taylor, K.C., Waddington, E.D., and Zielinski, G. Preliminary Depth-Age Scale of the GISP2 Ice Core. (1994). U.S. Army Cold Regions Research Laboratory Publication SR94-01, Hanover, NH.Google Scholar
Middleton, N.J. Geography of dust storms in South-West Asia. Journal of Climatology 6, (1986). 183196.Google Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., and Karlén, W. Highly variable northern temperatures reconstructed from low- and high-resolution proxy data. Nature 433, (2005). 613617.Google Scholar
Nezlin, N.P., Kostianoy, A.G., and Li, B.-L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. Journal of Arid Environments 62, (2005). 677700.Google Scholar
Nourgaliev, D.K., Heller, F., Borisov, A.S., Hajdas, I., Bonani, G., Iassonov, P.G., and Oberhänsli, H. Very high resolution paleosecular variation record for the last 1200 years from the Aral Sea. Geophysical Research Letters 30, 17 (2003). 4-14-4.Google Scholar
O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., and Whitlow, S.I. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, (1995). 19621964.Google Scholar
Orlovsky, L., and Orlovsky, N. White sand storms in Central Asia. Yang, Youlin, Squires, V., and Lu, Qi Global Alarm: Dust and Sand Storms from the World's Drylands. (2002). UNCCD, Bangkok. 169201.Google Scholar
Orlovsky, L., Orlovsky, N., and Durdyev, A. Dust storms in Turkmenistan. Journal of Arid Environments 60, (2005). 8397.Google Scholar
Panagiotopoulos, F., Shahgedanova, M., Hannachi, A., and Stephenson, D.B. Observed trends and teleconnections of the Siberian High: a recently declining center of action. Journal of Climate 18, (2005). 14111422.Google Scholar
Petschick, R., (2000). MacDiff 4.2.5 Bedienungsanleitung. (http://servemac.geologie.uni-frankfurt.de/Rainer/html).Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Lawrence Edwards, R., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weiyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal. yr BP. Radiocarbon 46, 3 (2004). 10291058.Google Scholar
Roberts, N., and Wright, H.E. Vegetational, lake-level, and climatic history of the Near East and Southwest Asia. Wright, H.E. Global Climates since the Last Glacial Maximum. (1993). University of Minnesota Press, 194220.Google Scholar
Röhl, U., and Abrams, L.J. High-resolution, downhole and non-destructive core measurements from Sites 999 and 1001 in the Carribean Sea: application to the Late Paleocene Thermal Maximum. Proceedings of the Ocean Drilling Program (ODP) Scientific Results vol. 165, (2000). Ocean Drilling Programm, College Station, TX. 191204.Google Scholar
Rohling, E.J., Mayewski, P.A., Abu-Zied, R.H., Casford, J.S.L., and Hayes, A. Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, (2002). 578593.Google Scholar
Romanov, N.N. Dust storms in Central Asia (Pyl'nye buri Srednei Asii). (1961). Samarkand University, Tashkent. 198 pp. (in Russian) Google Scholar
Romanov, N.N. Forecast of dust storms and advective dust haze. Instruction in short-term weather forecasts, Central Asia. Gidrometeoizdat Leningrad 2, 3 (1986). 210216. (in Russian) Google Scholar
Sahsamanoglou, H.S., Makrogiannis, T.J., and Kallimopoulos, P.P. Some aspects of the basic characteristics of the Siberian anticyclone. International Journal of Climatology 11, (1991). 827839.Google Scholar
Savelieva, N.I., Semiletov, I.P., Vasilevskaya, L.N., and Pugach, S.P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Progress in Oceanography 47, (1991). 279297.CrossRefGoogle Scholar
Seredkina, E.A. Dust storms in Kazakhstan (Pyl'nie buri v Kazakhstane). Proceedings of KazNIGMI 15, (1960). 5459. (in Russian) Google Scholar
Singer, A., Zobeck, T., Poberezsky, L., and Argaman, E. The PM10 and PM2.5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. Journal of Arid Environments 54, (2003). 705728. http://dx.doi.org/10.1006/jare.2002.1084 Google Scholar
Small, E.E., Giorgi, F.G., Sloan, L.S., and Hostetler, S. The effects of desiccation and climatic change on the hydrology of the Aral Sea. Journal of Climate 14, (2001). 300322.2.0.CO;2>CrossRefGoogle Scholar
Sorrel, P., (2006). The Aral Sea: a palaeoclimate archive. PhD thesis, University Potsdam (Germany) and University Claude Bernard-Lyon I (France), . 109 pp.Google Scholar
Sorrel, P., Popescu, S.-M., Head, M.J., Suc, J.P., Klotz, S., and Oberhänsli, H. Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 2–4 (2006). 304327.Google Scholar
Sorrel, P., Popescu, S.-M., Klotz, S., Suc, J.P., and Oberhänsli, H. Climate variability in the Aral Sea basin (Central Asia) during the late Holocene based on vegetation changes. Quaternary Research 67, 3 (2007). 357370.Google Scholar
Subbotina, O.I. Atmospheric circulation. Muminova, F.A., and Inagamova, S.I. Change of Climate in Middle Asia. (1995). SARNIIGMI Publishing, Tashkent. 834. in Russian Google Scholar
Usmanov, V.O. Estimation of the influence of dusty salt transfer on the productivity of agricultural crops in the Priaral region (Otzenka vliyaniya sole-pyleperenosa na productivnost' sel'skohozyaistvennih kultur v Priaral'skom regione). Problems of Desert Development 3–4, (1968). 147151. (in Russian) Google Scholar
Zavialov, P.O. Physical Oceanography of the Dying Aral Sea. (2005). Springer Verlag, published in association with Praxis Publishing, Chichester, UK. 146 pp.Google Scholar
Zolotokrylin, A.N. Dust storms in Turanian Lowland. Proceedings of Russian Academy of Sciences Geographic Series 6, (1996). 4854. (in Russian) Google Scholar