Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T16:23:04.030Z Has data issue: false hasContentIssue false

Cooling and freshening at 8.2 ka on the NW Iceland Shelf recorded in paired δ18O and Mg/Ca measurements of the benthic foraminifer Cibicides lobatulus

Published online by Cambridge University Press:  04 September 2012

Ursula Quillmann*
Affiliation:
Department of Geological Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder Colorado, USA
Thomas M. Marchitto
Affiliation:
Department of Geological Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder Colorado, USA
Anne E. Jennings
Affiliation:
Department of Geological Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder Colorado, USA
John T. Andrews
Affiliation:
Department of Geological Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder Colorado, USA
Birgitte F. Friestad
Affiliation:
Bjerknes Centre for Climate Research, University of Bergen, Norway
*
Corresponding author. Fax: + 1 303 492 6388. Email Address:Ursula.Quillmann@Colorado.EDU

Abstract

A shallow marine sediment core from NW Iceland provides evidence for a brief cooling and freshening at ~ 8200 cal yr BP, consistent with the hypothesis that the catastrophic outburst flood of the proglacial lakes Oijbway and Agassiz caused the 8.2 ka event. This is the first high-resolution record reconstructing near-surface temperatures and δ18Osw by paired measurements of Mg/Ca and δ18Ocalcite of a benthic foraminifer. We developed a new Mg/Ca temperature calibration for Cibicides lobatulus. Our down-core Mg/Ca derived temperature reconstruction dates the 8.2 ka cooling event between ~ 8300 cal yr BP and ~ 8100 cal yr BP, which is similar to the timing and 160-yr duration recorded in the Greenland ice cores. The near-surface temperature drop of ~ 3 to 5°C during the 8.2 ka event was accompanied by lighter δ18Osw values. Synchronously to the changes in the geochemical proxies, the percentages of two Arctic benthic foraminifers increased and the percent calcium carbonate decreased. Our record, combined with several others from the region, suggests that the freshwater outburst spread far from the source into the high-latitude North Atlantic. This freshwater input could have directly caused substantial high-latitude cooling, with reduced North Atlantic Deep Water formation amplifying the climatic impact.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, (1997). 483486.Google Scholar
Andersson, C., Pausata, F.S.R., Jansen, E., Risebrobaken, B., and Telford, R.J. Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean. Climate of the Past 6, (2010). 179193.Google Scholar
Andrews, J.T., and Giraudeau, J. Multiproxy records showing significant Holocene environmental variability: the inner N. Iceland shelf (Hunafloi). Quaternary Science Reviews 22, (2003). 175193.Google Scholar
Andrews, J.T., Larsen, B., Thors, K., Helgadottir, G., Olafsson, J., and Wittmaarck, A. Fjord–shelf–slope sediment continuum, East Greenland Margin. Cruise Report — RS Bjarni Saemundsson B1191 25, (1991). Google Scholar
Andrews, J.T., Hardardottir, J., Stoner, J.S., and Principato, S.M. Holocene sediment magnetic properties along a transect from Ìsafjarðardjúp to Djúpáll, Northwest Iceland. Arctic, Antarctic, and Alpine Research 40, (2008). 114.Google Scholar
Arbuszewski, J., deMenocal, P., Kaplan, A., and Farmer, E.C. On the fidelity of shell-derived δ18Oseawater estimates. Earth and Planetary Science Letters 300, (2010). 185196.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., and Gagnon, J.M. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, (1999). 344348.CrossRefGoogle Scholar
Barker, S., Greaves, M., and Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry Geophysics Geosystems 4, (2003). Google Scholar
Boyle, E.A., and Keigwin, L.D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth and Planetary Science Letters 76, (1985). 135150.Google Scholar
Boyle, E., and Rosenthal, Y. Chemical Hydrography of the South Atlantic During the Last Glacial Maximum; Cd and d13C. (1996). Springer, New York.Google Scholar
Bryan, S.P., and Marchitto, T.M. Mg/Ca-temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23, (2008). Google Scholar
Came, R.E., Oppo, D.W., and McManus, J.F. Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y. Geology 35, (2007). 315318.CrossRefGoogle Scholar
Caseldine, C., Langdon, P.G., and Holmes, N. Early Holocene climate variability and the timing and extent of the Holocene thermal maximum (HTM) in northern Iceland. Quaternary Science Reviews 25, (2006). 23142331.Google Scholar
Castaneda, L.S., Smith, L.M., Kristjansdottir, G.B., and Andrews, J.T. Temporal changes in Holocene d18O records from the northwest to central Iceland shelf. Journal of Quaternary Science 19, (2004). 114.Google Scholar
Channell, J.E.T., Hodel, D.A., Romero, O., Hillaire-Marcel, C., de Vernal, A., Stoner, J.S., Mazaud, A., and Roehl, U. A 750-kyr detrital-layer stratigraphy for the North Atlantic (IODP Sites U1302–U1303, Orphan Knoll, Labrador Sea). Earth and Planetary Science Letters 317–318, (2012). 218230.Google Scholar
Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W., Licciardi, J.M., and Teller, J.T. Freshwater forcing of abrupt climate change during the last glaciation. Science 293, (2001). 283287.Google Scholar
Clarke, G.K.C., Bush, A.B.G., and Bush, J.W.M. Freshwater discharge, sediment transport, and modeled climate impacts of the final drainage of glacial Lake Agassiz. Journal of Climate 22, (2009). 21612180.Google Scholar
Condron, A., and Winsor, P. A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophysical Research Letters 38, (2011). http://dx.doi.org/10.1029/2010GL046011 Google Scholar
Culver, S.J., and Buzas, M.A. Distribution of recent benthic foraminifera off the North American Atlantic Coast. Smithsonian Contributions to the Marine Sciences 6, (1980). 1512.Google Scholar
Darling, K.F., Kucera, M., Kroon, D., and Wade, C.M. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography 21, (2006). http://dx.doi.org/10.1029/2005PA001189. PA2011Google Scholar
Dean, W.E., Forester, R.M., and Bradbury, J.P. Early Holocene change in atmospheric circulation in the Northern Great Plains: an upstream view of the 8.2 ka cold event. Quaternary Science Reviews 21, (2002). 17631775.Google Scholar
Dekens, P.S., Lea, D.W., Pak, D.K., and Spero, H.J. Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochemistry Geophysics Geosystems 3, (2002). http://dx.doi.org/10.1029/2007GC001931 Google Scholar
Eiriksson, J., Knudsen, K., Haflidason, H., and Henriksen, P. Late-glacial and Holocene palaeoceanography of the North Iceland shelf. Journal of Quaternary Science 15, (2000). 2342.Google Scholar
Elderfield, H., Bertram, C.J., and Erez, J. Biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate. Earth and Planetary Science Letters 142, (1996). 409423.Google Scholar
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth and Planetary Science Letters 250, (2006). 633649.CrossRefGoogle Scholar
Ellison, C.R.W., Chapman, M.R., and Hall, I.R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, (2006). 19291932.Google Scholar
Engleman, E.E., Jackson, L.L., Norton, D.R., and Fisher, A.G. Determination of carbonate carbon in geological materials by coulometric titration. Chemical Geology 53, (1985). 125128.Google Scholar
Erez, J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Reviews in Mineralogy and Geochemistry 54, (2003). 115149.Google Scholar
Fairbanks, R.G. Barbados sea level and Th/U 14C calibration. IGBP Pages/World Data Center for Paleoclimatology Data Contribution Series #92-0202. (1992). NOAA/NGDC Paleoclimatology Program, Boulder Colorado.Google Scholar
Farmer, E.J., Chapman, M.R., and Andrews, J.E. Centennial-scale Holocene North Atlantic surface temperatures from Mg/Ca ratios in Globigerina bulloides . Geochemistry, Geophysics, Geosystems 9, (2008). 15 http://dx.doi.org/10.1029/2008GC002199 Google Scholar
Ferguson, J.E., Henderson, G.M., Kucera, M., and Rickaby, R.E.M. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient. Earth and Planetary Science Letters 265, (2008). 153166.Google Scholar
Flowers, G.E., Bjornsson, H.B., Geirsdottir, A., Miller, G.H., Black, J.L., and Clarke, G.K.C. Holocene climate conditions and glacier variation in central Iceland from physical modelling and empirical evidence. Quaternary Science Reviews 27, (2008). 797813.Google Scholar
Geirsdottir, A., Miller, G.H., Axford, Y., and Olafsdottir, S. Holocene and late Pleistocene climate and glacier fluctuations in Iceland. Quaternary Science Reviews 28, (2009). 21072118.Google Scholar
Grootes, P.M., and Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10^3 to 10^5-year time resolution. Journal of Geophysical Research 102, (1997). 2645526470.Google Scholar
Helgadottir, G. Paleoclimate (0 to > 14ka) of W and NW Iceland: an Icelandic/USA contribution to PALE. Cruise Report B9-97 R/V Bjarni Saemundsson RE 30, 17–30 July 1997. (1997). Hafrannsoknastofnun (Marine Research Institute), Reykjavik.Google Scholar
Hjelstuen, B.O., Kleiven, H.F., Haflidason, H., Kjennbakken, H., and Team, S. Marine geological cruise report from Byfjorden, Salhusfjorden and Herdlefjorden. Report No. 100-01/08. (2008). Department of Earth Science, University of Bergen, Bergen, Norway. 16 pp.Google Scholar
Husum, K. CRUISE REPORT ForArc UiT 2010: marine geological cruise to Kongsfjord and adjoining shelf, West Svalbard. (2010). Department of Geology, University of Tromsø, Norway.Google Scholar
Jennings, A., Syvitski, J., Gerson, L., Groenvold, K., Geirsdottir, A., Hardardottir, J., Andrews, J., and Hagen, S. Chronology and paleoenvironments during the late Weichselian deglaciation of the South-West Iceland shelf. Boreas 29, (2000). 167183.CrossRefGoogle Scholar
Jennings, A.E., Weiner, N.J., Helgadottir, G., and Andrews, J.T. Modern foraminferal faunas of the southwestern to northern Iceland shelf: oceanographic and environmental controls. Journal of Foraminiferal Research 34, (2004). 180207.Google Scholar
Jennings, A., Andrews, J., and Wilson, L. Holocene environmental evolution of the SE Greenland Shelf North and South of the Denmark Strait: Irminger and East Greenland current interactions. Quaternary Science Reviews 30, (2011). 980998.Google Scholar
Justwan, A., Koc, N., and Jennings, A.E. Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions. Quaternary Science Reviews 27, (2008). 15711582.Google Scholar
Kisakurek, B., Eisenhauer, A., Bohm, F., Garbe-Schonberg, D., and Erez, J. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth and Planetary Science Letters 273, (2008). 260269.Google Scholar
Kleiven, H.F., Kissel, C., Laj, C., Ninnemann, U.S., Richter, T.O., and Cortijo, E. Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst. Science 319, (2008). 6064.Google Scholar
Knudsen, K.L., Sondergaard, M.K.B., Eiriksson, J., and Jiang, H. Holocene thermal maximum off North Iceland: evidence from benthic and planktonic foraminifera in the 8600–5200 cal year BP time slice. Marine Micropaleontology 67, (2008). 120142.Google Scholar
Kobashi, T., Severinghaus, J.P., Brook, E.J., Barnola, J.M., and Grachev, A.M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews 26, (2007). 12121222.CrossRefGoogle Scholar
Kristjansdottir, G.B., Stoner, J.S., Jennings, A.E., Andrews, J.T., and Gronvold, K. Geochemistry of Holocene cryptotephras from the North Iceland Shelf (MD99-2269): intercalibration with radiocarbon and palaeomagnetic chrinostratigraphies. The Holocene 17, (2007). 155176.Google Scholar
Labeyrie, L., Jansen, E., and Cortijo, E. Les rapports des campagnes a la mer MD114/IMAGES V. (2003). Institut Polaire Francais Paul-Emile Victor, Brest.Google Scholar
Lambeck, K., and Chappel, J. Sea level change through the last glacial cycle. Science 27, (2001). 679686.Google Scholar
Larsen, D.J., Miller, G.H., Geirsdóttir, A., and Ólafsdóttir, S. Non‐linear Holocene climate evolution in the North Atlantic: a high-resolution proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland. Quaternary Science Reviews 39, (2012). 1425.Google Scholar
Lea, D.W., Mashiotta, T.A., and Spero, H.J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta 63, (1999). 23692379.Google Scholar
LeGrande, A.N., and Schmidt, G.A. Ensemble, water isotope-enabled, coupled general circulation modeling insights into the 8.2 ka event. Paleoceanography 23, (2008). Google Scholar
Lewis, C.F.M., Miller, A.A.L., Levac, E., Piper, D.J.W., and Sonnichsen, G.V. Lake Agassiz outburst age and routing by Labrador Current and the 8.2 ka event. Quaternary International 260, (2012). 8397.Google Scholar
Lynch-Stieglitz, J., Curry, W.B., and Slowey, N.C. A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera. Paleoceanography 14, (1999). 360373.Google Scholar
Marchitto, T.M. Nutrient proxies (d13C, Cd/Ca, Ba/Ca, Zn/Ca, d15N). Elias, S. Encyclopedia of Quaternary Science. (2006). Elsevier, Amsterdam.Google Scholar
Marchitto, T.M., Bryan, S.P., Curry, W.B., and McCorkle, D.C. Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma. Paleoceanography 22, (2007). PA1203 Google Scholar
Mathien-Blard, E., and Bassinot, F. Salinity bias on the foraminifera Mg/Ca thermometry: correction procedure and implications for past ocean hydrographic reconstructions. Geochemistry, Geophysics, Geosystems 10, (2009). Google Scholar
Norddahl, H., and Einarsson, T. Concurrent changes of relative sea-level and glacier extent at the Weichselian-Holocene boundary in Berufjordur, Eastern Iceland. Quaternary Science Reviews 20, (2001). 16071622.Google Scholar
Ólafsdóttir, S. Holocene Marine and Lacustrine Paleoclimate and Paleomagnetic Records from Iceland. (2010). Department of Geosciences, Reykjavik: University of Iceland. 114 Google Scholar
Ólafsdóttir, S., Jennings, A.E., Geirsdóttir, Á., Andrews, J., and Miller, G.H. Holocene variability of the North Atlantic Irminger current on the south- and northwest shelf of Iceland. Marine Micropaleontology 77, (2010). 101118.Google Scholar
Praetorius, S.K., McManus, J.F., Oppo, D.W., and Curry, W.B. Episodic reductions in bottom-water currents since the last ice age. Nature Geoscience 1, (2008). 449452.Google Scholar
Quillmann, U., Jennings, A.J., and Andrews, J.T. Reconstructing Holocene palaeoclimate and palaeoceanography in ìsafjarðardjúp, northwest Iceland, from two fjord records overprinted by relative sea-level and local hydrographic changes. Journal of Quaternary Science 25, (2010). 11441159.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Bigler, M., Rothlisberger, R., Fischer, H., Goto- Azuma, K., Hansson, M.E., and Ruth, U. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D6 (2006). D06102 Google Scholar
Renssen, H.H., Goose, T., Fichefet, T., and Camoin, J.-M. The 8.2 kyr BP event simulated by global atmosphere-sea-ice-ocean model. Geophysical Research Letters 28, (2001). 15671570.Google Scholar
Rohling, E.J., and Palike, H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, (2005). 975979.Google Scholar
Rosenthal, Y., Boyle, E.A., and Slowey, N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochimica et Cosmochimica Acta 61, (1997). 36333643.Google Scholar
Rosenthal, Y., Field, M.P., and Sherrell, R.M. Precise determination of element/calcium ratios in calcereous samples using sector field inductively coupled plasma mass spectrometry. Analytical Chemistry 71, (1999). 32483253.Google Scholar
Rosenthal, Y., Lohmann, G.P., Lohmann, K.C., and Sherrell, R.M. Incorporation and preservation of Mg in Globigerinoides sacculifer: implications for reconstructing the temperature and O-18/O-16 of seawater. Paleoceanography 15, (2000). 135145.Google Scholar
Rosenthal, Y., Perron-Cashman, S., Lear, C.H., Bard, E., Barker, S., Billups, K., Bryan, M., Delaney, M.L., deMenocal, P.B., Dwyer, G.S., Elderfield, H., German, C.R., Greaves, M., Lea, D.W., Marchitto, T.M., Pak, D.K., Paradis, G.L., Russell, A.D., Schneider, R.R., Scheiderich, K., Stott, L., Tachikawa, K., Tappa, E., Thunell, R., Wara, M., Weldeab, S., and Wilson, P.A. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geochemistry, Geophysics, Geosystems 5, (2004). Google Scholar
Rytter, F., Knudsen, K.L., Seidenkrantz, M.-S., and Eiriksson, J. Modern distribution of benthic foraminifera on the North Icelandic shelf and slope. Journal of Foraminiferal Research 32, (2002). 217244.Google Scholar
Scourse, J.D., Kennedy, H., Scott, G.A., and Austin, W.E.N. Stable isotopic analyses of modern benthic foraminifera from seasonally stratified shelf seas: disequilibria and the ‘seasonal effect’. The Holocene 14, (2004). 747758.Google Scholar
Stuiver, M., Reimer, P.J., and Braziunas, T.F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, (1998). 11271151.Google Scholar
Thomas, E.R., Wolff, E.W., Mulvaney, R., Steffensen, J.P., Johnsen, S.J., Arrowsmith, C., White, J.W.C., Vaughn, B., and Popp, T. The 8.2 ka event from Greenland ice cores. Quaternary Science Reviews 26, (2007). 7081.Google Scholar
Thornalley, D.J.R., Elderfield, H., and McCave, I.N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic. Nature 457, (2009). 711714.Google Scholar
Vinther, B.M. et al. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research-Atmospheres 111, (2006). D13102 http://dx.doi.org/10.1029/2005JD006921 Google Scholar
Wastegard, S. Early to middle Holocene silicic tephra horizons from the Katla volcanic system, Iceland: new results from the Faroe Islands. Journal of Quaternary Science 17, (2002). 723730.Google Scholar
Wiersma, A.P., Roche, D.M., and Renssen, H. Fingerprinting the 8.2 ka event climate response in a coupled climate model. Journal of Quaternary Science 26, (2011). 118127.Google Scholar