Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T19:46:43.617Z Has data issue: false hasContentIssue false

Cosmogenic 10Be dating of raised shorelines constrains the timing of lake levels in the eastern Lake Agassiz-Ojibway basin

Published online by Cambridge University Press:  18 July 2017

Pierre-Marc Godbout*
Affiliation:
Department of Earth and Atmospheric Sciences, GEOTOP Research Center, University of Quebec atMontreal, C.P. 8888, Succursale Centre-ville, Montreal, Quebec H3C 3P8, Canada
Martin Roy
Affiliation:
Department of Earth and Atmospheric Sciences, GEOTOP Research Center, University of Quebec atMontreal, C.P. 8888, Succursale Centre-ville, Montreal, Quebec H3C 3P8, Canada
Jean J. Veillette
Affiliation:
Geological Survey of Canada, Natural Resources Canada, 615 Booth Street, Ottawa, Ontario K1A 0E9, Canada
Joerg M. Schaefer
Affiliation:
Lamont-Doherty Earth Observatory, Geochemistry, 409 Comer Building, 61 Route 9W, P.O. Box 1000, Palisades, New York 10964, USA Department of Earth and Environmental Sciences, Columbia University, New York, New York 10027, USA
*
*Corresponding author at: Department of Earth and Atmospheric Sciences, GEOTOP Research Center, University of Quebec at Montreal, C.P. 8888, Succursale Centre-ville, Montreal, Quebec H3C 3P8, Canada. E-mail address: godbout.pierre-marc@courrier.uqam.ca (P.-M. Godbout).

Abstract

Surface exposure dating was applied to erosional shorelines associated with the Angliers lake level that marks an important stage of Lake Ojibway. The distribution of 15 10Be ages from five sites shows a main group (10 samples) of coherent 10Be ages yielding a mean age of 9.9±0.7 ka that assigns the development of this lake level to the early part of the Lake Ojibway history. A smaller group (3 samples) is part of a more scattered distribution of older 10Be ages (with 2 outliers) that points to an inheritance of cosmogenic isotopes from a previous exposure, revealing an apparent mean age of 15.8±0.9 ka that is incompatible with the Ojibway inundation and the regional deglaciation. Our results provide the first direct 10Be chronology on the sequence of lake levels in the Ojibway basin, which includes the lake stage presumably associated with the confluence and subsequent drainage of Lakes Agassiz and Ojibway. This study demonstrates the potential of this approach to date glacial lake shorelines and underlies the importance of obtaining additional chronological constraints on the Agassiz-Ojibway shoreline sequence to confidently assign a particular lake stage and/or lake-level drawdown to a specific time interval of the deglaciation.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 25, 483486.Google Scholar
Antevs, E., 1925. Retreat of the last ice-sheet in eastern Canada. Geological Survey of Canada Memoir 146, 142.Google Scholar
Balco, G., Briner, J., Finkel, R.C., Rayburn, J.A., Ridge, J.C., Schaefer, J.M., 2009. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quaternary Geochronology 4, 93107.Google Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10 Be and 26 Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., et al. 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344348.Google Scholar
Bauer, E., Ganopolski, A., Montoya, M., 2004. Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz. Paleoceanography 19, PA3014. http://dx.doi.org/10.1029/2004PA001030.Google Scholar
Böning, C.W., Behrens, E., Biastoch, A., Getzlaff, K., Bamber, J.L., 2016. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience 9, 523528.Google Scholar
Breckenridge, A., 2012. The Tintah-Campbell gap and implications for glacial Lake Agassiz drainage during the Younger Dryas cold interval. Quaternary Science Reviews 117, 124134.Google Scholar
Breckenridge, A., Lowell, T.V., Stroup, J.S., Evans, G., 2012. A review and analysis of varve thickness records from glacial Lake Ojibway (Ontario and Quebec, Canada). Quaternary International 260, 4354.Google Scholar
Brook, E.J., Nesje, A., Lehman, S.J., Raisbeck, G.M., Yiou, F., 1996. Cosmogenic nuclide exposure ages along a vertical transect in western Norway: implications for the height of the Fennoscandian ice sheet. Geology 24, 207210.Google Scholar
Carlson, A.E., Anslow, F.S., Obbink, E.A., LeGrande, A.N., Ullman, D.J., Licciardi, J.M., 2009. Surface-melt driven Laurentide Ice Sheet retreat during the early Holocene. Geophysical Research Letters 36, L24502. http://dx.doi.org/10.1029/2009GL040948.Google Scholar
Clarke, G.K.C., Leverington, D.W., Teller, J.T., Dyke, A.S., 2004. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200BP cold event. Quaternary Science Reviews 23, 389407.Google Scholar
Coleman, A.P., 1909. Lake Ojibway: Last of the great glacial lakes. Ontario Bureau of Mines Annual Report 18, 284293.Google Scholar
Daubois, V., Roy, M., Veillette, J.J., Ménard, M., 2014. The drainage of Lake Ojibway in glaciolacustrine sediments of northern Ontario and Quebec, Canada. Boreas 44, 305318.Google Scholar
Dredge, L.A., 1983. Character and Development of Northern Lake Agassiz and Its Relation to Keewatin and Hudsonian Ice Regimes. In: Teller, J.T., Clayton, L. (Eds.), Glacial Lake Agassiz. Geological Association of Canada, Special Paper 26, 117–131.Google Scholar
Dyke, A.S., 2004. An outline of North American Deglaciation with emphasis on central and northern Canada. In Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations – Extent and Chronology, Part II: North America. Elsevier B.V, New York, pp. 371406.Google Scholar
Dyke, A.S., Moore, A., Robertson, L., 2003. Deglaciation of North America. Geological Survey of Canada Open File 1574.Google Scholar
Dyke, A.S., Prest, V.K., 1987. Late Wisconsinan and Holocene History of the Laurentide Ice Sheet. Géographie physique et Quaternaire 41, 237263.Google Scholar
Ellison, C.R., Chapman, M.R., Hall, I.R., 2006. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, 19291932.Google Scholar
Elson, J.A., 1967. Geology of Glacial Lake Agassiz. In Mayer-Oakes, W.J. (Ed.), Life, Land and Water. University of Manitoba Press, Winnipeg, Manitoba, Canada, pp. 3695.Google Scholar
Fisher, T.G., Waterson, N., Lowell, T.V., Hajdas, I., 2009. Deglaciation ages and meltwater routing in the Fort McMurray region, northeastern Alberta and northwestern Saskatchewan, Canada. Quaternary Science Reviews 28, 16081624.Google Scholar
Goehring, B.M., Brook, E.J., Linge, H., Raisbeck, G.M., Yiou, F., 2008. Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quaternary Science Reviews 27, 320336.Google Scholar
Grafenstein, U.V., Erlenkeuser, H., Müller, J., Jouzel, J., Johnsen, S., 1998. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14, 7381.Google Scholar
Harbor, J., Stroeven, A.P., Fabel, D., Clarhäll, A., Kleman, J., Li, Y., Elmore, D., Fink, D., 2006. Cosmogenic nuclide evidence for minimal erosion across two subglacial sliding boundaries of the late glacial Fennoscandian ice sheet. Geomorphology 75, 9099.Google Scholar
Hardy, L., 1976. Contribution à l'étude géomorphologiques de la portion québécoise des Basses Terres de la Baie de James. PhD dissertation, Mcgill University, Montréal, Québec, Canada.Google Scholar
Hillaire-Marcel, C., de Vernal, A., Piper, D.J.W., 2007. Lake Agassiz Final drainage event in the northwest North Atlantic. Geophysical Research Letters 34, L15601. http://dx.doi.org/10.1029/2007GL030396.Google Scholar
Hughes, O.L., 1955. Surficial geology of Smooth Rock and Iroquois Falls maps-areas, Cochrane District, Ontario. PhD dissertation, University of Kansas, Lawrence.Google Scholar
Hughes, O.L., 1965. Surficial geology of part of the Cochrane District, Ontario, Canada. In: Wright, H.E., Jr., Frey, D. G. (Eds.), International Studies on the Quaternary: Papers Prepared on the Occasion of the 7th Congress of the International Association for Quarternary Research Boulder, Colorado. Geological Society of America, Special Papers 84, 535–565.Google Scholar
Jennings, A., Andrews, J., Pearce, C., Wilson, L., Ólfasdótttir, S., 2015. Detrital carbonate peaks on the Labrador shelf, a 13–7ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre. Quaternary Science Reviews 107, 6280.Google Scholar
Johnston, W.A., 1946. Glacial Lake Agassiz with special reference to the mode of deformation of the beaches. Geological Survey of Canada Bulletin 7, 20.Google Scholar
Klassen, R.W., 1983. Glacial Lake Agassiz. In: Teller, J.T., Clayton, L. (Eds.), Glacial Lake Agassiz. Geological Association of Canada Special Paper 26, pp. 97–115.Google Scholar
Kleiven, H.K., Kissel, C., Laj, C., Ninnemann, U.S., Richter, T.O., Cortijo, E., 2008. Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst. Science 319, 6064.Google Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences 111, 15296–15303.Google Scholar
Leverington, D.W., Mann, J.D., Teller, J.T., 2002. Changes in the Bathymetry and Volume of Glacial Lake Agassiz between 9200 and 7700 14C yr B.P. Quaternary Research 57, 244252.Google Scholar
Lewis, C.F.M, Anderson, T.W., 1989. Oscillations of levels and cool phases of the Laurentian Great Lakes caused by inflows from glacial Lakes Agassiz and Barlow-Ojibway. Journal of Paleolimnology 2, 99146.Google Scholar
Lewis, C.F.M, Blasco, S.M., Gareau, P.L., 2005. Glacial isostatic adjustment of the Laurentian Great Lakes basin: using the empirical record of strandline deformation for reconstruction of early Holocene paleo-lakes and discovery of a hydrologically closed phase. Géographie physique et Quaternaire 59, 187210.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard‐Andersen, M.L., Johnsen, S.J., Larsen, L.B., Dahl‐Jensen, D., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D06102. http://dx.doi.org/10.1029/2005JD006079.Google Scholar
Renssen, H., Goosse, H., Fichefet, T., 2007. Simulation of Holocene cooling events in a coupled climate model. Quaternary Science Reviews 26, 20192029.Google Scholar
Richard, P.J., Veillette, J.J., Larouche, A.C., 1989. Palynostratigraphie et chronologie du retrait glaciaire au Témiscamingue: évaluation des âges 14C et implications paléoenvironnementales. Canadian Journal of Earth Sciences 26, 627641.Google Scholar
Rinterknecht, V., Clark, P., Raisbeck, G., Yiou, F., Brook, E., Tschudi, S., Lunkka, J., 2004. Cosmogenic 10Be dating of the Salpausselkä I Moraine in southwestern Finland. Quaternary Science Reviews 23, 22832289.Google Scholar
Roy, M., Dell’Oste, F., Veillette, J.J., de Vernal, A., Hélie, J.F., Parent, M., 2011. Insights on the events surrounding the final drainage of Lake Ojibway based on James Bay stratigraphic sequences. Quaternary Science Reviews 30, 682692.Google Scholar
Roy, M., Veillette, J.J., Daubois, V., Ménard, M., 2015. Late-stage phases of glacial Lake Ojibway in the central Abitibi region, eastern Canada. Geomorphology 248, 1423.Google Scholar
Satterly, J., 1937. Glacial Lakes Ponask and Sachigo District of Kenora (Patricia Portion), Ontario. The Journal of Geology 45, 790796.Google Scholar
Schaefer, J.M., Denton, G.H., Kaplan, M., Putnam, A., Finkel, R.C., Barrell, D.J., Andersen, B.G., et al., 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324, 622625.Google Scholar
Shoemaker, E.M., 1992. Water sheet outburst floods from the Laurentide Ice Sheet. Canadian Journal of Earth Sciences 29, 12501264.Google Scholar
Smith, D.G., Fisher, T.G., 1993. Glacial Lake Agassiz: The northwestern outlet and paleoflood. Geology 21, 912.Google Scholar
Stewart, K.W., Lindsey, C.C., 1983. Postglacial dispersal of lower vertebrates in the Lake Agassiz region. In: Teller, J.T., Clayton, L. (Eds.), Glacial Lake Agassiz. Geological Association of Canada Special Paper 26, pp. 391–419.Google Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research: Solid Earth 105, 2375323759.Google Scholar
Stone, J.O., Balco, G.A., Sugden, D.E., Caffee, M.W., Sass, L.C. III, Cowdery, S.G., Siddoway, C., 2003. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299, 99102.Google Scholar
Stroeven, A.P., Fabel, D., Harbor, J., Hättestrand, C., Kleman, J., 2002. Quantifying the erosional impact of the Fennoscandian ice sheet in the Torneträsk–Narvik corridor, northern Sweden, based on cosmogenic radionuclide data. Geografiska Annaler: Series A, Physical Geography 84, 275287.Google Scholar
Stroup, J.S., Lowell, T.V., Breckenridge, A., 2013. A model for the demise of large, glacial Lake Ojibway, Ontario and Quebec. Journal of Paleolimnology 50, 105121.Google Scholar
Tarasov, L., Peltier, W.R., 2004. A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quaternary Science Reviews 23, 359388.Google Scholar
Teller, J.T., 1987. Proglacial lakes and the southern margin of the Laurentide Ice Sheet. In Ruddiman, W. F., Wright, H.E., Jr. (Eds.), North America and adjacent oceans during the last deglaciation. Geological Survey of America, The Geology of North America K-3, Boulder, Colorado, pp. 3969.Google Scholar
Teller, J.T., Leverington, D.W., 2004. Glacial Lake Agassiz: A 5000yr history of change and its relationship to the δ18O record of Greenland. Geological Society of America Bulletin 116, 729742.Google Scholar
Teller, J.T., Leverington, D.W., Mann, J.D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21, 879887.Google Scholar
Teller, J.T., Thorleifson, L.H., 1983. The Lake Agassiz-Lake Superior connection. In Teller, J.T., Clayton, L. (Eds.), Glacial Lake Agassiz. Geological Association of Canada Special Paper 26, 261–290.Google Scholar
Thorleifson, L.H., 1996. Review of Lake Agassiz history. In Teller, J. T., Thorleifson, L. H., Matile, G., Brisbin, W. C. (Eds.), Sedimentology, Geomorpholoy and History of the Central Lake Agazzis Basin: Field Trip B2. Geological Association of Canada, Winnipeg, pp. 5584.Google Scholar
Ullman, D.J., Carlson, A.E., Anslow, F.S., LeGrande, A.N., Licciardi, J.M., 2015. Laurentide ice-sheet instability during the last deglaciation. Nature Geoscience 8, 534537.Google Scholar
Ullman, D.J., Carlson, A.E., Hostetler, S.W., Clark, P.U., Cuzzone, J., Milne, G.A., Winsor, K., Caffee, M., 2016. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quaternary Science Reviews 152, 4959.Google Scholar
Upham, W., 1895. The Glacial Lake Agassiz. United States Geological Survey, Monograph 25.United States Government Printing Office, Washington DC.Google Scholar
Veillette, J.J., 1983. Déglaciation de la vallée supérieure de l’Outaouais, le lac Barlow et le sud du lac Ojibway, Québec. Géographie physique et Quaternaire 37, 6784.Google Scholar
Veillette, J.J., 1988. Déglaciation et évolution des lacs proglaciaires post-Algonquin et Barlow au Témiscamingue, Québec et Ontario. Géographie physique et Quaternaire 42, 731.Google Scholar
Veillette, J.J., 1994. Evolution and paleohydrology of glacial lakes Barlow and Ojibway. Quaternary Science Reviews 13, 945971.Google Scholar
Veillette, J.J., Dyke, A.S., Roy, M., 1999. Ice-flow evolution of the Labrador Sector of the Laurentide Ice Sheet: a review, with new evidence from northern Quebec. Quaternary Science Reviews 18, 9931019.Google Scholar
Veillette, J.J., Roy, M., Paulen, R.C., Ménard, M., St-Jacques, G., 2017. Uncovering the hidden part of a large ice stream of the Laurentide Ice Sheet, northern Ontario, Canada. Quaternary Science Reviews 155, 136158.Google Scholar
Vincent, J.S., Hardy, L., 1979. The evolution of glacial lakes Barlow and Ojibway, Quebec and Ontario. Geological Survey of Canada Bulletin 316, 18.Google Scholar
Young, N.E., Schaefer, J.M., Briner, J.P., Goehring, B.M., 2013. A 10Be production‐rate calibration for the Arctic. Journal of Quaternary Science 28, 515526.Google Scholar
Supplementary material: Image

Godbout supplementary material

Godbout supplementary material 1

Download Godbout supplementary material(Image)
Image 12.8 MB
Supplementary material: Image

Godbout supplementary material

Godbout supplementary material 2

Download Godbout supplementary material(Image)
Image 14.9 MB
Supplementary material: Image

Godbout supplementary material

Godbout supplementary material 3

Download Godbout supplementary material(Image)
Image 14.9 MB
Supplementary material: Image

Godbout supplementary material

Godbout supplementary material 4

Download Godbout supplementary material(Image)
Image 13.3 MB
Supplementary material: Image

Godbout supplementary material

Godbout supplementary material 5

Download Godbout supplementary material(Image)
Image 14.9 MB
Supplementary material: Image

Godbout supplementary material

Godbout supplementary material 6

Download Godbout supplementary material(Image)
Image 13.3 MB
Supplementary material: File

Godbout supplementary material

Table S1

Download Godbout supplementary material(File)
File 14.3 KB