Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T08:23:21.661Z Has data issue: false hasContentIssue false

Direct terrestrial–marine correlation demonstrates surprisingly late onset of the last interglacial in central Europe

Published online by Cambridge University Press:  20 January 2017

Mark J. Sier
Affiliation:
Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, The Netherlands Paleomagnetic Laboratory ‘Fort Hoofddijk’, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands National Center for Human Evolution (CENIEH), Paseo Sierra de Atapuerca s/n, 09002 Burgos, Spain
Wil Roebroeks*
Affiliation:
Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, The Netherlands
Corrie C. Bakels
Affiliation:
Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, The Netherlands
Mark J. Dekkers
Affiliation:
Paleomagnetic Laboratory ‘Fort Hoofddijk’, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands
Enrico Brühl
Affiliation:
Landesamt für Denkmalpflege und Archäologie, Richard-Wagner-Str. 9, 06114 Halle, Germany Römisch-Germanisches Zentralmuseum, Forschungsbereich Altsteinzeit, Schloss Monrepos, 56567 Neuwied, Germany
Dimitri De Loecker
Affiliation:
Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, The Netherlands
Sabine Gaudzinski-Windheuser
Affiliation:
Römisch-Germanisches Zentralmuseum, Forschungsbereich Altsteinzeit, Schloss Monrepos, 56567 Neuwied, Germany Johannes Gutenberg-Universität Mainz, Institut für Vor- und Frühgeschichte, Schönborner Hof, Schillerstrasse 11, 55116 Mainz, Germany
Norbert Hesse
Affiliation:
Landesamt für Denkmalpflege und Archäologie, Richard-Wagner-Str. 9, 06114 Halle, Germany
Adam Jagich
Affiliation:
Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, The Netherlands
Lutz Kindler
Affiliation:
Römisch-Germanisches Zentralmuseum, Forschungsbereich Altsteinzeit, Schloss Monrepos, 56567 Neuwied, Germany
Wim J. Kuijper
Affiliation:
Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, The Netherlands
Thomas Laurat
Affiliation:
Landesamt für Denkmalpflege und Archäologie, Richard-Wagner-Str. 9, 06114 Halle, Germany Römisch-Germanisches Zentralmuseum, Forschungsbereich Altsteinzeit, Schloss Monrepos, 56567 Neuwied, Germany
Herman J. Mücher
Affiliation:
Prinses Beatrixsingel 21, 6301 VK Valkenburg, The Netherlands
Kirsty E.H. Penkman
Affiliation:
“BioArCh” Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
Daniel Richter
Affiliation:
Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Deutscher Platz 6, 04103 Leipzig, Germany
Douwe J.J. van Hinsbergen
Affiliation:
Physics of Geological Processes, University of Oslo, Sem Sælands vei 24, 0391 Oslo, Norway
*
Corresponding author.

Abstract

An interdisciplinary study of a small sedimentary basin at Neumark Nord 2 (NN2), Germany, has yielded a high-resolution record of the palaeomagnetic Blake Event, which we are able to place at the early part of the last interglacial pollen sequence documented from the same section. We use this data to calculate the duration of this stratigraphically important event at 3400 ± 350 yr. More importantly, the Neumark Nord 2 data enables precise terrestrial–marine correlation for the Eemian stage in central Europe. This shows a remarkably large time lag of ca. 5000 yr between the MIS 5e ‘peak’ in the marine record and the start of the last interglacial in this region.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Retired from the University of Amsterdam.

References

Eissmann, L. Quaternary geology of eastern Germany (Saxony, Saxon-Anhalt, South Brandenburg, Thüringia), type area of the Elsterian and Saalian Stages in Europe. Quaternary Science Reviews 21, (2002). 12751346.Google Scholar
Fang, X., Li, J., Van der Voo, R., Mac Niocaill, C., Dai, X., Kemp, R.A., Derbyshire, E., Cao, J., Wang, J., and Wang, G. A record of the Blake Event during the last interglacial paleosol in the western Loess Plateau of China. Earth and Planetary Science Letters 146, (1997). 7382.Google Scholar
Gibbard, P.L. Definition of the Middle-Upper Pleistocene boundary. Global and Planetary Change 36, (2003). 201208.Google Scholar
Kukla, G.J. PALEOCLIMATE: the last interglacial. Science 287, (2000). 987988.Google Scholar
Laj, C., and Channell, J.E.T. Geomagnetic Excursioneomagnetism. Kono, M. Geomagnetism. (2007). Elsevier, Amsterdam. 373416.Google Scholar
Langereis, C.G., Dekkers, M.J., Lange, G.J., Paterne, M., and Santvoort, P.J.M. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophysical Journal International 129, (1997). 7594.Google Scholar
Lisiecki, L.E., and Raymo, M.E. A Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20, (2005). PA1003PA.Google Scholar
Lourens, L.J. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the D18O, tephra, calcareous nannofossil and geomagnetic reversal chronologies of the past 1,1 Mys. Paleoceanography 19, (2004). PA3010PA.Google Scholar
Mania, D., and Mania, U. La stratigraphie et le Paléolithique du complexe saalien dans la région de la Saale et de l'Elbe. L'Anthropologie 112, (2008). 1547.Google Scholar
Menke, B., and Tynni, R. Das Eeminterglazial und das Weichselfrühglazial von Rederstall/Dittmarschen und ihre Bedeutung für die mitteleuropäische Jungpleistozängliederung. Geologisches Jahrbuch A76, (1984). 3 Google Scholar
Müller, H. Pollenanalytische Untersuchungen und Jahresschitenzählungen an der eem-zeitlichen Kieselgur von Bispingen/Luhe. Geologisches Jahrbuch A21, (1974). 149169.Google Scholar
Penkman, K.E.H., Preece, R.C., Keen, D.H., and Collins, M.J. British aggregates: an improved chronology using amino acid racemization and degradation of intra-crystalline amino acids (IcPD). English Heritage Research Department Report Series vol. 6, (2008). Google Scholar
Reinders, J., and Hambach, U. A geomagnetic event recorded in loess deposits of the Tonchesberg (Germany): identification of the Blake magnetic polarity episode. Geophysical Journal International 122, (1995). 407418.CrossRefGoogle Scholar
Roberts, A.P. Geomagnetic excursions: knowns and unknowns. Geophysical Research Letters 35, (2008). Google Scholar
Sánchez-Goñi, M.F., Eynaud, F., Turon, J.L., and Shackleton, N.J. High resolution palynological record off the Iberian margin: direct land–sea correlation for the last interglacial complex. Earth and Planetary Science Letters 171, (1999). 123137.CrossRefGoogle Scholar
Shackleton, N.J., Chapman, M., Sánchez-Goñi, M.F., Pailler, D., and Lancelot, Y. The classic marine isotope substage 5e. Quaternary Research 58, (2002). 1416.Google Scholar
Shackleton, N.J., Sánchez-Goñi, M.F., Pailler, D., and Lancelot, Y. Marine isotope substage 5e and the Eemian interglacial. Global and Planetary Change 36, (2003). 151155.Google Scholar
Smith, J.D., and Foster, J.H. Geomagnetic reversal in Brunhes normal polarity epoch. Science 163, (1969). 565567.CrossRefGoogle ScholarPubMed
Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., and Nérini, D. Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth and Planetary Science Letters 219, (2004). 377396.Google Scholar
Tric, E., Laj, C., Valet, J., Tucholka, P., Paterne, M., and Guichard, F. The Blake geomagnetic event: transition geometry, dynamical characteristics and geomagnetic significance. Earth and Planetary Science Letters 102, (1991). 113.CrossRefGoogle Scholar
Tucholka, P., Fontugne, M., Guichard, F., and Paterne, M. The Blake magnetic polarity episode in cores from the Mediterranean Sea. Earth and Planetary Science Letters 86, (1987). 320326.CrossRefGoogle Scholar
Turner, C. The Eemian interglacial in the North European plain and adjacent areas. Geologie en Mijnbouw 79, (2000). 217231.Google Scholar
Turner, C. Problems of the duration of the Eemian interglacial in Europe North of the Alps. Quaternary Research 58, (2002). 4548.CrossRefGoogle Scholar
Tzedakis, P.C., Raynaud, D., McManus, J.F., Berger, A., Brovkin, V., and Kiefer, T. Interglacial diversity. Nature Geoscience 2, (2009). 751755.Google Scholar
Vandamme, D. A new method to determine paleosecular variation. Physics of the Earth and Planetary Interiors 85, (1994). 131142.Google Scholar
Zagwijn, W.H. Vegetation, climate and radiocarbon datings in the late Pleistocene of the Netherlands: I. Eemian and Early Weichselian, Nieuwe Serie. Mededelingen van de Geologische Stichting 14, (1961). 1545.Google Scholar
Zhu, R.X., Zhou, L.P., Laj, C., Mazaud, A., and Ding, Z.L. The Blake geomagnetic polarity episode recorded in Chinese loess. Geophysical Research Letters 21, (1994). 697700.Google Scholar
Zijderveld, J.D.A. Demagnetisation of rocks: analysis of results. Collinson, D.W., Creer, K.M., and Runcorn, S.K. Methods in Palaeomagnetism. (1967). Elsevier, Amsterdam. 254286.Google Scholar
Supplementary material: File

Sier et al. Supplementary Material

Supplementary Material

Download Sier et al. Supplementary Material(File)
File 12.3 MB