Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T06:19:53.819Z Has data issue: false hasContentIssue false

A drastic change in glacial dynamics at the beginning of the seventeenth century on Novaya Zemlya coincides in time with the strongest volcanic eruption in Peru and the Great Famine in Russia

Published online by Cambridge University Press:  11 March 2022

Valeriy Rusakov*
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academу of Sciences, Kosygina 19, 119991 Moscow, Russia
Тat'yana Kuz'mina
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academу of Sciences, Kosygina 19, 119991 Moscow, Russia
Alexander Borisov
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academу of Sciences, Kosygina 19, 119991 Moscow, Russia
Irina Gromyak
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academу of Sciences, Kosygina 19, 119991 Moscow, Russia
Denis Dogadkin
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academу of Sciences, Kosygina 19, 119991 Moscow, Russia
Тat'yana Romashova
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academу of Sciences, Kosygina 19, 119991 Moscow, Russia
Galina Solovi'eva
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academу of Sciences, Kosygina 19, 119991 Moscow, Russia
Ruslan Lukmanov
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academу of Sciences, Kosygina 19, 119991 Moscow, Russia
*
*Corresponding author at: Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academу of Sciences, Kosygina 19, 119991Moscow, Russia. E-mail address: rusakov@geokhi.ru (V. Rusakov).

Abstract

In this study, we reconstructed for the first time the recent 1000-yr-long history of Goluboi tidewater glacier at the eastern side of the Novaya Zemlya, Kara Sea, based on accelerator mass spectrometry 14C dating with higher-resolution age control on the basis of 210Pb and 137Cs radionuclides for the time period after AD 1885, using multiproxy analyses (lithology, mineralogy, and geochemistry) of proximal glaciomarine sediments from the Oga Fjord. Against the background of the active glacial dynamics and the intense meltwater runoff until the end of the sixteenth century, there was a sudden cooling at the beginning of the seventeenth century, which manifested itself in a significant decrease in the sedimentation rates. In time, this event coincides with the strongest volcanic eruption, AD 1600, in South America (in Peru) in the history of human settlement of the continent, which may have plunged the globe into cold climate chaos (Witze, 2008), and caused the Great Famine, AD 1601 to AD 1603, in Russia. The synchronicity of the described events may be an additional fact confirming the global impact of the eruption on the climate of our planet.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreeva, I.A., Lapina, N.N., 1998. Methodica granulometricheskogo analiza donnikh osadkov Mirovogo okeana i geologicheskaya interpretatsiya resultatov laboratornogo izucheniya veschestvennogo sostava [Method of grain-size analysis of bottom sediments of the World Ocean and geological interpretation of the results of laboratory study]. VNIIOkeangeologia, St. Petersburg.Google Scholar
Batchelor, C.L., Margold, M., Krapp, M., Murton, D.K., Dalton, A.S., Gibbard, P.L., Stokes, C.R., Murton, J.B., Manica, A., 2019. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications 10:3713.CrossRefGoogle ScholarPubMed
Boggs, S. Jr., 2009. Petrology of Sedimentary Rocks. 2nd ed. Cambridge University Press, New York.CrossRefGoogle Scholar
Boguslavskiy, V.V., 2004. Golod 1601–1603 godov [Famine 1601–1603]. In: Slavianskaya enziklopedia XVII vek [Slavic encyclopedia of the 17th century]. Olma Press, Moscow.Google Scholar
Carlson, A.E., Clark, P.U., 2012. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Reviews of Geophysics 50, RG4007.CrossRefGoogle Scholar
Carr, J.R., Stokes, C., Vieli, A., 2014. Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. Journal of Glaciology 219, 155170.CrossRefGoogle Scholar
Chizhov, O.P., Koryakin, V.S., Davidovich, N.V., Kanevskii, Z.M., Zinger, E.M., Bazheva, V.Ya., Bazhev, A.B., Khmelevskoi, I.F., 1968. Oledenenie Novoi Zemli [Glaciation of the Novaya Zemlya]. Nauka, Moscow.Google Scholar
Clarke, G.K.C., 1987. Fast glacier flow: ice streams, surging and tidewater glaciers. Journal of Geophysical Research Atmospheres 92(B9), 88358841.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Copland, L., Sharp, M.J., Dowdeswell, J.A., 2003. The distribution and flow characteristics of surge-type glaciers in the Canadian high Arctic. Annals of Glaciology 36, 7381.CrossRefGoogle Scholar
D'Andrea, W.J., Vaillencourt, D.A., Balascio, N.L., Werner, A., Roof, S.R., Retelle, M., Bradley, R.S., 2012. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40, 10071010.CrossRefGoogle Scholar
Davis, J.C., 1990. Statisticheskii analiz v geologii [Statistical analysis in geology]. Nedra, Moscow.Google Scholar
Divine, D., Isakson, E., Martma, T., Mejer, H.A.J., Moore, J., Pohjola, V., van de Wal, R.S.W., Godtliebsen, F., 2011. Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice core data. Polar Research 30, 112.CrossRefGoogle Scholar
Doebelin, N., Kleeberg, R., 2015. Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography 48, 15731580.CrossRefGoogle ScholarPubMed
Dowdeswell, J.A., Williams, M., 1997. Surge-type glaciers in the Russian High Arctic identified from. digital satellite imagery. Journal of Glaciology 43, 489494.CrossRefGoogle Scholar
Dubinina, E.O., Chizhova, Ju.N., Kossova, S.A., Avdeenko, A.S., Miroshnikov, A.Yu., 2020. Formation of isotope parameters (δD, δ18O, and d) of glaciers and water runoff from Severny Island of the Novaya Zemlya archipelago. Oceanology 60, 174188.CrossRefGoogle Scholar
Eisen, O., Harrison, W.D., Raymond, C.F., 2001. The surges of Variegated Glacier, Alaska, U.S.A., and their connection to climate and mass balance. Journal of Glaciology 47, 351358.CrossRefGoogle Scholar
Evans, D.J.A., Rea, B.R., 2003. Surging glacier landsystem. In: Evans, D.J.A., (Ed.), Glacial Landsystems. Edward Arnold, London, pp. 259288.Google Scholar
Fairbanks, R.G., 1989. A 17,000-year glacio eustatic sea level records: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.CrossRefGoogle Scholar
Frolov, V.T., 1993. Litologiya [Lithology]. Book 2. MGU Press, Moscow.Google Scholar
Gataullin, V., Mangerud, J., Svendsen, J.I., 2001. The extent of the Late Weichselian ice sheet in the southeastern Barents Sea. Global and Planetary Change 31, 453474.CrossRefGoogle Scholar
Gataullin, V.N., Polyak, L.V., Epstein, O.G., Romanyuk, B.F., 1993. Glacigenic deposits of the Central Deep: a key to the Late Quaternary evolution of the eastern Barents Sea. Boreas 22, 4758.CrossRefGoogle Scholar
Glazovsky, A.F., 2003. Glacier changes in the Russian Arctic. In: Casey, A. (Ed.), Workshop on Assessing Global Glacier Recession. Glaciological Data Report GD-32. World Data Center for Glaciology, Boulder, CO, pp. 7882.Google Scholar
Gorshkov, S.G. (Ed.), 1980. Atlas of the Oceans. Arctic Ocean. USSR Ministry of Defense, Voenno-Morskoy Flot Press, Moscow.Google Scholar
Grant, K.L., Stokes, C.R., Evans, I.S., 2009. Identification and characteristics of surge-type glaciers on Novaya Zemlya, Russian Arctic. Journal of Glaciology 55, 960972.CrossRefGoogle Scholar
Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The “North American shale composition”: its complication, major and trace element characteristics. Geochimica et Cosmochimica Acta 48, 24692482.CrossRefGoogle Scholar
Howe, J.A., Husum, K., Inall, M.E., Coogan, J., Luckman, A., Arosio, R., Abernethy, C., Verchili, D., 2019. Autonomous underwater vehicle (AUV) observations of recent tidewater glacier retreat, western Svalbard. Marine Geology 417, 106009.CrossRefGoogle Scholar
Hughes, A.L.C., Gyllenkreutz, R., Lohne, Ø.S. Mangerud, J., Svendsen, J.I., 2015. The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 145.CrossRefGoogle Scholar
Isaksson, E., Divine, D., Kohler, J., Martma, T., Pohjola, V., Motoyama, H., Watanabe, O., 2005. Climate oscillations as recorded in Svalbard ice core delta O-18 records between AD 1200 and 1997. Geografiska Annaler, Series A: Physical Geography 87, 203214.CrossRefGoogle Scholar
Jernas, P., Klitgaard-Kristensen, D., Husum, K., Wilson, L., Koç, N., 2013. Paleoenvironmental changes of the last two millennia on the western and northern Svalbard shelf. Boreas 42, 236255.CrossRefGoogle Scholar
Karamzin, N.M., 1829. Istoriya gosudarstva Rossiiskogo. Tom XI. Chast’ II [History of the Russian state. Vol. XI. Part II]. N. Grecha, St. Petersburg.Google Scholar
Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., Miller, G.H., et al. , 2009. Recent warming reverses long term Arctic cooling. Science 325, 12361239.CrossRefGoogle ScholarPubMed
Koide, M., Soutar, A., Goldberg, E.D., 1972. Marine geochronology with 210Pb. Earth and Planetary Science Letters 3, 442446.CrossRefGoogle Scholar
Korsun, S., Hald, M., 1998. Modern benthic foraminifera off Novaya Zemlya tidewater glaciers, Russian Arctic. Arctic and Alpine Research 1, 6177.CrossRefGoogle Scholar
Kossova, S.A., Dubinina, E.O., Miroshnikov, A.Yu., 2019. Mechanisms of seawater freshening in Tsivol'ki and Sedova Bays (Novaya Zemlya) according to isotope (δD, δ18O) data. In: XXII Academician Vinogradov Symposium on the Geochemistry of Isotopes. [In Russian.] GEOKhI RAN, Moscow, pp. 8788.Google Scholar
Kotlyakov, V.M. (Ed.), 1978. Katalog lednikov SSSR. Tom 3, Severnyj Kraj. Chast’ 2, Novaja Zemlja [Catalogue of glaciers USSR. Volume 3, Northern area. Part 2, Novaya Zemlya]. Hydrometeoizdat, Leningrad.Google Scholar
Kuptsov, V.M., 1986. Absolyutnaya geokhronologiya donnykh osadkov okeanov I morei [Absolute geochronology of oceanic and marine bottom sediments]. Nauka, Moscow.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences USA 43, 1529615303.CrossRefGoogle Scholar
Linderholm, H.W., Nicolle, M., Francus, P., Gajewski, K., Helama, S., Korhola, A., Solomina, O., et al. , 2018. Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Climate of the Past 14, 473514.CrossRefGoogle Scholar
Lopatin, B.G. (Ed.), 1999. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii [State geological map of the Russian Federation]. S-38-40. 1:1,000,000. Cartographic Production VSEGEI, St. Petersburg.Google Scholar
Luoto, T.P., Helama, S., 2010. Paleoclimatological and paleolimnological records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quaternary Science Reviews 29, 24112423.CrossRefGoogle Scholar
Luoto, T.P., Nevalainen, L., 2015. Late Holocene precipitation and temperature changes in Northern Europe linked with North Atlantic forcing. Climate Research 66, 3748.CrossRefGoogle Scholar
Majewski, W., Szczuciński, W., Zajączkowski, M., 2009. Interactions of Arctic and Atlantic water-masses and associated environmental changes during the last millennium, Hornsund. Boreas 38, 529544.CrossRefGoogle Scholar
Mangerud, J., Landvik, J.Y., 2007. Younger Dryas cirque glaciers in western Spitsbergen: smaller than during the Little Ice Age. Boreas 36, 278285.CrossRefGoogle Scholar
Matthews, J.A., Briffa, K.R., 2005. The “Little Ice Age”: re-evaluation of an evolving concept. Geografiska Annaler, Series A: Physical Geography 87A, 1736.CrossRefGoogle Scholar
Matusevich, N.N., Sokolov, A.V., 1927. Novaya Zemlya [Novaya Zemlya]. Severnyi Pechatnik, Vologda, Russia.Google Scholar
Meeker, L.D., Mayewski, P.A., 2002. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. The Holocene 12, 257266.CrossRefGoogle Scholar
Meier, M.F., Post, A., 1969. What are glacier surges? Canadian Journal of Earth Sciences 6, 807817.CrossRefGoogle Scholar
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M.K., Rysgaard, S., Nygaard, R., Huybrechts, P., Meysman, F.J.R., 2017. Marine-terminating glaciers sustain high productivity in Greenland fjords. Global Change Biology 23, 53445357.CrossRefGoogle ScholarPubMed
Melkonian, A.K., Willis, M.J., Pritchard, M.E., Stewart, A.J., 2016. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment 174, 244257.CrossRefGoogle Scholar
Miller, G.H., Brigham-Grette, J., Alley, R.B., Anderson, L., Bauch, H.A., Douglas, M.S.V., Edwards, M.E., et al. , 2010. Temperature and precipitation history in the Arctic. Quaternary Science Reviews 29, 16791715.CrossRefGoogle Scholar
Mix, A.C., Bard, E., Schneider, R., 2001. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657.CrossRefGoogle Scholar
Moore, D.M., Reynolds, R.C.J., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford.Google Scholar
Moore, G.W.K., 2013. The Novaya Zemlya Bora and its impact on Barents Sea air-sea interaction. Geophysical Research Letters 40, 34623467.CrossRefGoogle Scholar
Murdmaa, I., Polyak, L., Ivanova, E., Khromova, N., 2004. Paleoenvironments in Russkaya Gavan’ Fjord (NW Novaya Zemlya, Barents Sea) during the last millennium. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 141154.CrossRefGoogle Scholar
Nesje, A., Dahl, S.O., 2003. The “Little Ice Age”—only temperature? The Holocene 13, 139145.CrossRefGoogle Scholar
Nesje, A., Dahl, S.O., Thun, T., Nordli, O., 2008. The “Little Ice Age” glacial expansion in western Scandinavia: summer temperature or winter precipitation? Climate Dynamics 30, 789801.CrossRefGoogle Scholar
Nicolle, M., Debret, M., Massei, N., Colin, C., de Vernal, A., Divine, D., Werner, J.P., Hormes, A., Korhola, A., Linderholm, H.W., 2018. Climate variability in the subarctic area for the last 2 millennia. Climate in the Past 14, 101116.CrossRefGoogle Scholar
Ó Cofaigh, C., Dowdeswell, J.A., 2001. Laminated sediments in glacimarine environments: diagnostic criteria for their interpretation. Quaternary Science Reviews 20, 14111436.CrossRefGoogle Scholar
Opel, T., Fritzsche, D., Meyer, H., 2013. Eurasian Arctiс climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Climate in the Past 9, 23792389.CrossRefGoogle Scholar
Ottesen, D., Dowdeswell, J.A., 2006. Assemblages of submarine landforms produced by tidewater glaciers in Svalbard. Journal of Geophysical Research 111(F1), F01016.CrossRefGoogle Scholar
Ottesen, D., Dowdeswell, J.A., Benn, D., Kristensen, L., Kristensen, H., Kristensen, O., Hansen, L., Lebesbye, E., Forwick, M., Vorren, T.O., 2008. Submarine landforms characteristic of glacier surges in two Spitsbergen fjords. Quaternary Science Reviews 27, 15831599.CrossRefGoogle Scholar
PAGES 2k Consortium, 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6, 339346.CrossRefGoogle Scholar
Patton, H., Andreassen, K., Bjarnadóttir, L.R., Dowdeswell, J.A., Winsborrow, M.C.M., Noormets, R., Polyak, L., Auriac, A., Hubbard, A., 2015. Geophysical constraints on the dynamics and retreat of the Barents Sea ice sheet as a paleobenchmark for models of marine ice sheet deglaciation. Reviews of Geophysics 53, 10511098.CrossRefGoogle Scholar
Pawłowska, J., Zajączkowski, M., Łącka, M., Lejzerowicz, F., Esling, P., Pawlowski, J., 2016. Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA. Climate in the Past 12, 14591472.CrossRefGoogle Scholar
Petelin, V.P., 1967. Granulometricheskiy analiz morskikh donnikh osadkov [Grain-size analysis of the marine bottom sediments]. Nauka, Moscow.Google Scholar
Polyak, L., Forman, S.L., Herlihy, F.A., Ivanov, G., Krinitsky, P., 1997. Late Weichselian deglacial history of the Svytaya (Saint) Anna Trough, northern Kara Sea, Arctic Russia. Marine Geology 143, 169188.CrossRefGoogle Scholar
Polyak, L., Gataullin, V., Okuneva, O., Stelle, V., 2000. New constraints on the limits of the Barents-Kara ice sheet during the Last Glacial Maximum based on borehole stratigraphy from the Pechora Sea. Geology 28, 611614.2.0.CO;2>CrossRefGoogle Scholar
Polyak, L., Lehman, S.J., Gataullin, V., Jull, A.J.T., 1995. Two-step deglaciation of the southeastern Barents Sea. Geology 23, 567571.2.3.CO;2>CrossRefGoogle Scholar
Polyak, L., Murdmaa, I., Ivanova, E., 2004. A high-resolution, 800-year glaciomarine record from Russkaya Gavan, a Novaya Zemlya fjord, eastern Barents Sea. The Holocene 4, 638644.Google Scholar
Polyak, L., Solheim, A., 1994. Late- and postglacial environments in the northern Barents Sea west of Franz Josef Land. Polar Research 13, 197207.CrossRefGoogle Scholar
Polyakov, I.V., Pnyushkov, A.V., Alkire, M.B., Ashik, I.M., Baumann, T.M., Carmack, E.C., Goszczko, I., et al. , 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285291.CrossRefGoogle ScholarPubMed
Post, J.E., Bish, D.L., 1989. Rietveld refinement of crystal structures using powder X-ray diffraction data in Modern powder diffraction. In: Bish, D.L., Post, J.E. (Eds.), Reviews in Mineralogy. Walter de Gruyter, Berlin, pp. 227308.Google Scholar
Prothero, D.R., Schwab, F., 2013. Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy. 3rd ed. Freeman, New York.Google Scholar
Rusakov, V.Yu., Kuz'mina, T.G., Levitan, M.A., Toropchenova, E.S., Zhilkina, A.V., 2017. Lithology and geochemistry typification of surface sea-bottom sediment at the Kara Sea. Oceanology 57, 214226.CrossRefGoogle Scholar
Rusakov, V.Yu., Kuz'mina, Т.G., Тoropchenova, Е.S., Zhilkina, А.V., 2018. Modern sedimentation in the Kara Sea: evidence from the lithological–geochemical investigation of surface bottom sediments. Geochemistry International 56, 10761096.CrossRefGoogle Scholar
Sapozhnikov, Yu.A., Aliev, R.A., Kalmykov, S.N., 2006. Radioaktivnost’ okruzhayushchei sredy. Teoriya I praktika [Environmental radioactivity. Theory and practice]. BINOM Laboratoriya znanii, Moscow.Google Scholar
Serreze, M.C., Stroeve, J., 2015. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 373, 20140159.CrossRefGoogle ScholarPubMed
Shumskii, P.A., 1949. Sovremennoe oledenenie Sovetskoi Arktiki [Modern glaciation of the Soviet Arctic]. In: Saks, V.N. (Ed.), Proceedings of AARI, Vol. 11. Izd. Glavsevmorputi, Leningrad.Google Scholar
Spielhagen, R.F., Werner, K., Sørensen, S.A., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T.M., Hald, M., 2011. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450453.CrossRefGoogle Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., et al. , 2004. Late Quaternary ice sheet history of eastern Eurasia. Quaternary Science Reviews 23, 12291271.CrossRefGoogle Scholar
Syvitski, J.P.M., 1989. On the deposition of sediment within glacier-influenced fjords: oceanographic controls. Marine Geology 85, 301329.CrossRefGoogle Scholar
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.Google Scholar
Thouret, J.-C., Davila, J., Eissen, J.-P., 1999. Largest explosive eruption in historical times in the Andes at Huaynaputina volcano, a.d. 1600, southern Peru. Geology 27, 435438.2.3.CO;2>CrossRefGoogle Scholar
Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., Frank, D.C., 2009. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324, 7880.CrossRefGoogle ScholarPubMed
Trouet, V., Scourse, J.D., Raible, C.C., 2012. North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last millennium: reconciling contradictory proxy records of NAO variability. Global and Planetary Change 84–85, 4855.CrossRefGoogle Scholar
Udalov, A.A., Vedenin, A.A., Chava, A.I., Shchuka, S.A., 2019. Benthic fauna of Oga Bay (Novaya Zemlya, Kara Sea). Oceanology 59(6), 931940.CrossRefGoogle Scholar
Verosub, K.L., Lippman, J., 2008. Global impacts of the 1600 eruption of Peru's Huaynaputina volcano. EOS 89, 141148.CrossRefGoogle Scholar
Werner, J.P., Divine, D.V., Ljungqvist, F.C., Nilsen, T., Francus, P., 2018. Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia. Climate in the Past 14, 527557.CrossRefGoogle Scholar
Witze, A., 2008. The volcano that changed the world. Nature. https://doi.org/10.1038/news.2008.747.CrossRefGoogle Scholar
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., Fifield, L.K., 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713716.CrossRefGoogle ScholarPubMed
Zeeberg, J., Forman, S.L., 2001. Changes in glacier extent on north Novaya Zemlya in the twentieth century. The Holocene 2, 161175.CrossRefGoogle Scholar
Zeeberg, J., Lubinski, D.J., Forman, S.L., 2001. Holocene relative sea-level history of Novaya Zemlya, Russia, and implications for Late Weichselian ice-sheet loading. Quaternary Research 56, 218230.CrossRefGoogle Scholar
Supplementary material: File

Rusakov et al. supplementary material

Rusakov et al. supplementary material

Download Rusakov et al. supplementary material(File)
File 318.7 KB