Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T22:21:31.522Z Has data issue: false hasContentIssue false

Dust pathways of the Songnen Plain, Northeast China in the last glacial period and their implications for ecological security

Published online by Cambridge University Press:  20 January 2025

Yan Jiao
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China
Yuanyun Xie*
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Yunping Chi*
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Lei Sun
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Peng Wu
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China
Zhenyu Wei
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China
Haijin Liu
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China
Yehui Wang
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China
Ruonan Liu
Affiliation:
College of Geographic Science, Harbin Normal University, Harbin 150025, China
*
Corresponding authors: Y. Xie; Email: xyy0451@163.com; Y. Chi; Email: 1982cyp@163.com
Corresponding authors: Y. Xie; Email: xyy0451@163.com; Y. Chi; Email: 1982cyp@163.com

Abstract

Loess, a geologic record of dust, is an optimal archive for exploring paleoclimate and the paleo-dust path from source to sink. The dust path for the Songnen Plain, NE China, during the last glacial period has not been established. To address this, 63 surface sediment samples from the Northeast China Sandy Lands, i.e., Onqin Daga Sandy Land (OD), Horqin Sandy Land (HQ), Hulun Buir Sandy Land (HL), and Songnen Sandy Land (SN), and six samples from the last glacial loess in the Harbin area were collected for elemental geochemical analysis of the <10 μm fraction to quantitatively reconstruct the dust pathway using a frequentist model. The results show that these sandy lands have a distinct geochemical composition due to a control from markedly different provenances. The quantitative results indicate that the dust contribution of the southwestern SN to the Harbin loess is as high as 50.4–77.2%, followed by the OD and HQ (3.3–34.8%), the northwestern SN (0–36.8%), and the HL (0–8%). Notably, the dust contribution to the Harbin loess began to change considerably after ~46–41 ka BP, with a significant increase from 1.1% to 41.2% from the northwestern direction. Some ecological safety strategies are proposed to address dust pollution in the Harbin area.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Joint first authors: Y. Jiao and Y. Xie.

References

Adkison, M.D., 2009. Drawbacks of complex models in frequentist and Bayesian approaches to natural-resource management. Ecological Applications 19, 198205.CrossRefGoogle ScholarPubMed
An, Z., 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.CrossRefGoogle Scholar
An, Z.S., Kukla, G., Porter, S.C., Xiao, J.L., 1991. Late Quaternary dust flow on the Chinese loess plateau. Catena 18, 125132.CrossRefGoogle Scholar
Bi, J., Huang, J., Fu, Q., Wang, X., Shi, J., Zhang, W., Huang, Z., Zhang, B., 2011. Toward characterization of the aerosol optical properties over Loess Plateau of Northwestern China. Journal of Quantitative Spectroscopy and Radiative Transfer 112, 346360.CrossRefGoogle Scholar
Chen, B., Yang, X., Jiang, Q., Liang, P., Lattin Mackenzie, L., Zhou, Y., 2022. Geochemistry of aeolian sand in the Taklamakan Desert and Horqin Sandy Land, northern China: implications for weathering, recycling, and provenance. Catena 208, 105769. https://doi.org/10.1016/j.catena.2021.105769.CrossRefGoogle Scholar
Chen, J., Li, G., Yang, J., Rao, W., Lu, H., Balsam, W., Sun, Y., Ji, J., 2007. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta 71, 39043914.CrossRefGoogle Scholar
Chen, Q., Li, Z., Dong, S., Yu, Q., Zhang, C., Yu, X., 2021. Applicability of chemical weathering indices of eolian sands from the deserts in northern China. Catena 198, 105032. https://doi.org/10.1016/j.catena.2020.105032.CrossRefGoogle Scholar
Chen, Z., Li, G., 2013. Evolving sources of eolian detritus on the Chinese Loess Plateau since early Miocene: tectonic and climatic controls. Earth and Planetary Science Letters 371, 220225.CrossRefGoogle Scholar
Chou, C., Formenti, P., Maille, M., Ausset, P., Helas, G., Harrison, M., Osborne, S., 2008. Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning Experiment field campaign in Niger, January 2006. Journal of Geophysical Research: Atmospheres 113, D00C10. https://doi.org/10.1029/2008JD009897.CrossRefGoogle Scholar
Collins, A.L., Walling, D.E., Leeks, G.J., 1997. Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type. Geografiska Annaler: Series A, Physical Geography 79, 239254.CrossRefGoogle Scholar
Collins, A.L., Zhang, Y., Walling, D.E., Grenfell, S.E., Smith, P., 2010. Tracing sediment loss from eroding farm tracks using a geochemical fingerprinting procedure combining local and genetic algorithm optimisation. Science of the Total Environment 408, 54615471.CrossRefGoogle ScholarPubMed
Dehghani, S., Moore, F., Vasiluk, L., Hale, B.A., 2018. The geochemical fingerprinting of geogenic particles in road deposited dust from Tehran metropolis, Iran: implications for provenance tracking. Journal of Geochemical Exploration 190, 411423.CrossRefGoogle Scholar
Ding, J.N., Wu, Y.Q., Tan, L.H., Fu, T.Y., Du, S.S., Wen, Y.L., Li, D.W., 2021. Trace and rare earth element evidence for the provenances of aeolian sands in the Mu Us Desert, NW China. Aeolian Research 50, 100683. https://doi.org/10.1016/j.aeolia.2021.100683.CrossRefGoogle Scholar
Ding, Z.L., Rutter, N.W., Sun, J.M., Yang, S.L., Liu, T.S., 2000. Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China: evidence from grain size records of loess-palaeosol and red clay sequences. Quaternary Science Reviews 19, 547558.CrossRefGoogle Scholar
Du, H.R., Xie, Y.Y., Kang, C.G., Chi, Y.P., Wang, J., Sun, L., 2020. Grain size and geochemical characteristics of loess in Harbin and their implications for dust sources. Deserts of China 40, 13. https://doi.org/10.7522/j.issn.1000-694X.2019.00046.Google Scholar
Du, S.S., Wu, Y.Q., Tan, L.H., 2018. Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau. Aeolian Research 32, 6070.CrossRefGoogle Scholar
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., et al., 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 129234.Google Scholar
García Comendador, J., Martínez Carreras, N., Fortesa, J., Company, J., Borràs, A., Estrany, J., 2021. Combining sediment fingerprinting and hydro-sedimentary monitoring to assess suspended sediment provenance in a mid-mountainous Mediterranean catchment. Journal of Environmental Management 299, 113593. https://doi.org/10.1016/j.jenvman.2021.113593.CrossRefGoogle Scholar
Gartzia-Bengoetxea, N., González-Arias, A., Merino, A., de Arano, I.M., 2009. Soil organic matter in soil physical fractions in adjacent semi-natural and cultivated stands in temperate Atlantic forests. Soil Biology and Biochemistry 41, 16741683.CrossRefGoogle Scholar
Gholami, H., Rahimi, S., Fathabadi, A., Habibi, S., Collins, A.L., 2020. Mapping the spatial sources of atmospheric dust using GLUE and Monte Carlo simulation. Science of the Total Environment 723, 138090. https://doi.org/10.1016/j.scitotenv.2020.138090.CrossRefGoogle ScholarPubMed
Gong, H., Zhang, R., Yue, L., Zhang, Y.X., Li, J., 2015. Magnetic fabric from red clay sediments in the Chinese Loess Plateau. Scientific Reports 5, 9706. https://doi.org/10.1038/srep09706.CrossRefGoogle ScholarPubMed
Grousset, F.E., Biscaye, P.E., 2005. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chemical Geology 222, 149167.CrossRefGoogle Scholar
Gu, J.F., Zhu, C.J., Hao, Z.C., 2012. Application of principal component analysis in water quality evaluation by SPSS software. Advanced Materials Research 403, 32773280.Google Scholar
Hu, W.J., Du, S.S., Tan, L.H., Chen, C.W., Duan, J.L., Wu, Y.Q., 2022. Provenance and formation mechanism of aeolian sands on the eastern bank of Co Nag Lake on the Qinghai-Tibet Plateau. Catena 208, 105786. https://doi.org/10.1016/j.catena.2021.105786.CrossRefGoogle Scholar
Jiang, Q.D., Yang, X.P., 2019. Sedimentological and geochemical composition of aeolian sediments in the Taklamakan Desert: implications for provenance and sediment supply mechanisms. Journal of Geophysical Research: Earth Surface 124, 12171237.CrossRefGoogle Scholar
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718), 6771.CrossRefGoogle ScholarPubMed
Kang, C.G., Chang, Z., Cai, C.M., Jiang, H.J., Qiu, H., Ni, C., 2013. Heavy mineral characteristics of the loess deposits in the Eastern Songnen Plain: implication for sediment provenance. Advanced Materials Research 726, 40814085.CrossRefGoogle Scholar
Liang, A., Zhang, Z., Lizaga, I., Dong, Z., Zhang, Y., Liu, X., Xiao, F., Gao, J., 2023. Which is the dominant source for the aeolian sand in the Badain Jaran Sand Sea, Northwest China: fluvial or gobi sediments? Catena 225, 107011. https://doi.org/10.1016/j.catena.2023.107011.CrossRefGoogle Scholar
Licht, A., Pullen, A., Kapp, P., Abell, J., Giesler, N., 2016. Eolian cannibalism: reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. Geological Society of America Bulletin 128, 944956.CrossRefGoogle Scholar
Li, G., Chen, J., Ji, J., Yang, J., Conway, T.M., 2009. Natural and anthropogenic sources of East Asian dust. Geology 37, 727730.CrossRefGoogle Scholar
Li, L., Chen, J., Chen, Y., Hedding, D.W., Li, T., Li, L.F., Li, G., et al., 2018. Uranium isotopic constraints on the provenance of dust on the Chinese Loess Plateau. Geology 46, 747750.CrossRefGoogle Scholar
Li, L., Li, G.K., Li, T., Yi, S., Lu, H., Hedding, D.W., Chen, J., Li, G., 2023. Tracking the provenance of aeolian loess in Northeastern China by uranium isotopes. Geochemistry, Geophysics, Geosystems 24, e2022GC010715. https://doi.org/10.1029/2022GC010715.CrossRefGoogle Scholar
Liu, J.H., Chi, Y.P., Xie, Y.Y., Kang, C.G., Wei, Z.Y., Wu, P., Sun, L., 2023. Geochemical characteristics of Songnen Sandy Land and its indication of contribution to aeolian dust. [In Chinese.] Journal of Desert Research 43, 252263.Google Scholar
Liu, L., Xie, Y.Y., Chi, Y.P., Kang, C.G., Wu, P., Wei, Z.Y., Zhang, Y.X., Zhang, M., 2021. Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance. [In Chinese.] Marine Geology & Quaternary Geology 41, 192206.Google Scholar
Liu, Q., Yang, X., 2018. Geochemical composition and provenance of aeolian sands in the Ordos Deserts, northern China. Geomorphology 318, 354374.CrossRefGoogle Scholar
Liu, T., Ding, Z., 1998. Chinese loess and the paleomonsoon. Annual Review of Earth and Planetary Sciences 26, 111145.CrossRefGoogle Scholar
Liu, T.S., 1966. Composition and Texture of Loess. Science Press, Beijing.Google Scholar
Li, Y., Gholami, H., Song, Y., Fathabadi, A., Malakooti, H., Collins, A.L., 2020. Source fingerprinting loess deposits in Central Asia using elemental geochemistry with Bayesian and GLUE models. Catena 194, 104808. https://doi.org/10.1016/j.catena.2020.104808.CrossRefGoogle Scholar
Li, Y., Song, Y., Chen, X., Shi, Z., Kaskaoutis, D.G., Gholami, H., Li, Y., 2023. Late Pleistocene dynamics of dust emissions related to westerlies revealed by quantifying loess provenance changes in North Tian Shan, Central Asia. Catena 227, 107101. https://doi.org/10.1016/j.catena.2023.107101.CrossRefGoogle Scholar
Lizaga, I., Latorre, B., Gaspar, L., Navas, A., 2020. FingerPro: an R package for tracking the provenance of sediment. Water Resources Management 34, 38793894.CrossRefGoogle Scholar
Lu, H., An, Z., 1998. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau. Science in China Series D: Earth Sciences 41, 626631.CrossRefGoogle Scholar
Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P., Balkanski, Y., 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99, 6197.CrossRefGoogle Scholar
Mahowald, N.M., Kloster, S., Engelstaedter, S., Moore, J.K., Mukhopadhyay, S., McConnell, J.R., Albani, S., et al., 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics 10, 1087510893.CrossRefGoogle Scholar
Miyazaki, T., Kimura, J.I., Katakuse, M., 2016. Geochemical records from loess deposits in Japan over the last 210 kyr: lithogenic source changes and paleoclimatic indications. Geochemistry, Geophysics, Geosystems 17, 27452761.CrossRefGoogle Scholar
Nie, J., Peng, W., 2014. Automated SEM–EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau. Aeolian Research 13, 7175.CrossRefGoogle Scholar
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H.Y., Zheng, H.B., Weltje, G.J., 2007. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26, 230242.CrossRefGoogle Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653667.CrossRefGoogle Scholar
Qiu, S.W., 2008. Geomorphology and Quaternary Geology and Application in Northeastern China. Jilin Science and Technology Press, Changchun, pp. 114124.Google Scholar
Rao, W.B., Tan, H.B., Jiang, S.Y., Chen, J.S., 2011. Trace element and REE geochemistry of fine-and coarse-grained sands in the Ordos deserts and links with sediments in surrounding areas. Geochemistry 71, 155170.CrossRefGoogle Scholar
Rao, W.B., Yang, J.D., Chen, J., Li, G.J., 2006. Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China: implications for loess provenance and monsoon evolution. Chinese Science Bulletin 51, 14011412.CrossRefGoogle Scholar
Shu, P., Li, B., Wang, H., Qiu, Y., Niu, D., Dianzhang, D., An, Z., 2018. Geochemical characteristics of surface dune sand in the Mu Us Desert, Inner Mongolia, and implications for reconstructing the paleoenvironment. Quaternary International 479, 106116.CrossRefGoogle Scholar
Smalley, I., 1995. Making the material: the formation of silt sized primary mineral particles for loess deposits. Quaternary Science Reviews 14, 645651.CrossRefGoogle Scholar
Song, Y., Chen, X., Li, Y., Fan, Y., Collins, A.L., 2022. Quantifying the provenance of dune sediments in the Taklimakan Desert using machine learning, multidimensional scaling and sediment source fingerprinting. Catena 210, 105902. https://doi.org/10.1016/j.catena.2021.105902.CrossRefGoogle Scholar
Sun, D.H., Bloemendal, J., Rea, D.K., An, Z., Vandenberghe, J., Lu, H., Su, R., Liu, T., 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55, 325340.CrossRefGoogle Scholar
Sun, D.H., Lu, H.Y., 2007. Grain size and dust accumulation rate of late Cenozoic eolian deposition and the inferred atmospheric circulation evolutions. [In Chinese.] Quaternary Science 2, 251262.Google Scholar
Sun, J.H., Xie, Y.Y., Kang, C.G., Chi, Y.P., Wu, P., Sun, L., Wei, Z.Y., Sun, Y., Hou, X.R., 2022. Stratigraphic properties of the Baitushan Formation in Pingan Town, the eastern foot of the Greater Hinggan Mountains: an indication of provenance and sedimentary environment. [In Chinese.] Journal of Stratigraphy 2, 196208.Google Scholar
Sun, J.M., 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters 203, 845859.CrossRefGoogle Scholar
Sun, J.M., Zhu, X.K., 2010. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8Ma: implications for provenance change. Earth and Planetary Science Letters 290, 438447.CrossRefGoogle Scholar
Sun, L., Xie, Y.Y., Kang, C.G., Chi, Y.Y., Wu, P., Wei, Z.Y., Li, S., Zhao, Q., Liu, S., 2022. The composition of heavy minerals of the sandy lands, Northeast China and their implications for tracing detrital sources. PLoS One 17, e0276494. https://doi.org/10.1371/journal.pone.0276494CrossRefGoogle ScholarPubMed
Tamponi, M., Bertoli, F., Innocenti, F., Leoni, L., 2003. X-ray fluorescence analysis of major elements in silicate rocks using fused glass discs. Atti della Società Toscana di Scienze Naturali, Memorie Serie A 107, 7380.Google Scholar
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Oxford Blackwell, London.Google Scholar
Újvári, G., Kok, J.F., Varga, G., Kovács, J., 2016. The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Science Reviews 154, 247278.CrossRefGoogle Scholar
Vandenberghe, J., 2013. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Science Reviews 121, 1830.CrossRefGoogle Scholar
Wang, L.Y., Du, H.S., 2018. Dynamic evolution and simulation prediction of aeolian vegetation in Songnen Sandy Land in recent 35 years. [In Chinese.] Research of Soil and Water Conservation 25, 380385.Google Scholar
Wei, C.Y., Li, C.A., Kang, C.G., Chang, G.R., 2015. Grain size characteristics of Huangshan loess in Harbin and its implications for its genesis. Earth Science 40, 19451954.Google Scholar
Wu, P., Xie, Y.Y., Li, Y., Kang, C.G., Chi, Y.P., Sun, L., Wei, Z.Y., 2022. Decoupling between circulation pattern and dust path since the last glacial in the Songnen Plain, NE China: insights from quantitative provenance reconstruction of the Harbin dust sediments. Aeolian Research 57, 100818. https://doi.org/10.1016/j.aeolia.2022.100818.CrossRefGoogle Scholar
Wu, P., Xie, Y.Y., Li, Y., Kang, C.G., Chi, Y.P., Sun, L., Wei, Z.Y., 2023. Provenance variations of the loess deposits in the East Asian monsoon boundary zone, Northeast China: response to the variations of climate and wind regimes. Catena 222, 106804. https://doi.org/10.1016/j.catena.2022.106804.CrossRefGoogle Scholar
Xie, J., Wu, F.Y., Ding, Z.L., 2007. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance. Acta Petrologica Sinica 23, 523528.Google Scholar
Xie, Y.Y., Chi, Y.P., 2016. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: constraint on provenance and implications for formation of aeolian loess. Journal of Asian Earth Sciences 120, 4361.CrossRefGoogle Scholar
Xie, Y.Y., Kang, C.G., Chi, Y., Du, H., Wang, J., Sun, L., 2019. The loess deposits in Northeast China: the linkage of loess accumulation and geomorphic-climatic features at the easternmost edge of the Eurasian loess belt. Journal of Asian Earth Sciences 181, 103914. https://doi.org/10.1016/j.jseaes.2019.103914.CrossRefGoogle Scholar
Xie, Y.Y., Kang, C.G., Chi, Y.P., Wu, P., Wei, Z.Y., Wang, J., Sun, L., 2020a. Reversal of the middle-upper Songhua River in the late Early Pleistocene, Northeast China. Geomorphology 369, 107373. https://doi.org/10.1016/j.geomorph.2020.107373.CrossRefGoogle Scholar
Xie, Y.Y., Liu, L., Kang, C., Chi, Y., 2020b. Sr-Nd isotopic characteristics of the Northeast Sandy Land, China and their implications for tracing sources of regional dust. Catena 184, 104303. https://doi.org/10.1016/j.catena.2019.104303.CrossRefGoogle Scholar
Xie, Y.Y., Meng, J., Guo, L., 2014. REE geochemistry of modern eolian dust deposits in Harbin city, Heilongjiang province, China: implications for provenance. Catena 123, 7078.CrossRefGoogle Scholar
Xie, Y.Y., Yuan, F., Zhan, T., Kang, C.G., Chi, Y.P., 2018. Geochemical and isotopic characteristics of sediments for the Hulun Buir Sandy Land, northeast China: implication for weathering, recycling and dust provenance. Catena 160, 170184.CrossRefGoogle Scholar
Yang, P., Yuan, D., Yuan, W., Kuang, Y., Jia, P., He, Q., 2010. Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA. Chinese Science Bulletin 55, 14121422.CrossRefGoogle Scholar
Yang, X., Li, H., Conacher, A., 2012. Large-scale controls on the development of sand seas in northern China. Quaternary International 250, 7483.CrossRefGoogle Scholar
Yang, X., Liang, P., Zhang, D., Li, H., Rioual, P., Wang, X., Xu, B., et al. 2019. Holocene aeolian stratigraphic sequences in the eastern portion of the desert belt (sand seas and sandy lands) in northern China and their palaeoenvironmental implications. Science China Earth Sciences 62, 13021315.CrossRefGoogle Scholar
Yang, X., Liu, Y., Li, C., Song, Y., Zhu, H., Jin, X., 2007b. Rare earth elements of aeolian deposits in Northern China and their implications for determining the provenance of dust storms in Beijing. Geomorphology 87, 365377.CrossRefGoogle Scholar
Yang, X., Zhu, B., White, P.D., 2007a. Provenance of aeolian sediment in the Taklamakan Desert of western China, inferred from REE and major-elemental data. Quaternary International 175, 7185.CrossRefGoogle Scholar
Yue, Y., Wang, J., Lv, H., Liu, J., Wang, Z., Li, L., 2005. Land use optimization at ecological security level in desert regions – a case study of Horqin Sandy Land. Progress in Safety Science and Technology 5, 21112116.Google Scholar
Zeng, M.X., Song, Y.G., Yang, H., Li, Y., Cheng, L., Li, F.Q., Zhu, L.D., Wu, Z.J., Wang, N.J., 2021. Quantifying proportions of different material sources to loess based on a grid search and Monte Carlo model: a case study of the Ili Valley, Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 565, 110210. https://doi.org/10.1016/j.palaeo.2020.110210.CrossRefGoogle Scholar
Zhang, Q.Y., Zhao, X.Y., Zhang, Y., Li, L., 2002. Preliminary study on sand-dust storm disaster and countermeasures in China. Chinese Geographical Science 12, 913.CrossRefGoogle Scholar
Zhang, W.F., Zhao, J.X., Chen, J., Ji, J.F., Liu, L., 2018. Binary sources of Chinese loess as revealed by trace and REE element ratios. Journal of Asian Earth Sciences 166, 8088.CrossRefGoogle Scholar
Zhang, Z.C., Liang, A.M., Dong, Z.B., Zhang, Z.H., 2022. Sand provenance in the Gurbantunggut Desert, northern China. Catena 214, 106242. https://doi.org/10.1016/j.catena.2022.106242.CrossRefGoogle Scholar
Zhang, Z.C., Pan, K.J., Zhang, C.X., Liang, A.M., 2020. Geochemical characteristics and the provenance of aeolian material in the Hexi Corridor Desert, China. Catena 190, 104483. https://doi.org/10.1016/j.catena.2020.104483.CrossRefGoogle Scholar
Zhao, W.C., Liu, L.W., Chen, J., Ji, J.F., 2019. Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source. Science China Earth Sciences 62, 14281440.CrossRefGoogle Scholar
Zhao, Y.J., Song, C.W., 2021. The spatiotemporal evolution characteristics of the Songnen Sand Land's Net Primary Productivity (NPP). Agriculture and Technology 41, 9699.Google Scholar
Supplementary material: File

Jiao et al. supplementary material

Jiao et al. supplementary material
Download Jiao et al. supplementary material(File)
File 229.8 KB