Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T17:52:17.209Z Has data issue: false hasContentIssue false

Dynamics of a Holocene Cliff-Top Dune along Mountain River, Northwest Territories, Canada

Published online by Cambridge University Press:  20 January 2017

Christian Bégin
Affiliation:
Centre géoscientifique de Québec, Commission géologique du Canada, Sainte-Foy, Québec, GIV 4C7, Canada
Yves Michaud
Affiliation:
Centre géoscientifique de Québec, Commission géologique du Canada, Sainte-Foy, Québec, GIV 4C7, Canada
Louise Filion
Affiliation:
Centre d'éemdes nordiques, Université Laval, Sainte-Foy, Québec, GIK 7P4, Canada

Abstract

The dynamics of a cliff-top dune system located at the foot of the Mackenzie Mountains was reconstructed by radiocarbon dating and tree ring analysis of forest paleosols in eolian sediments. The first evidence of eolian activity dates to ca. 3000 yr B.P. when the breaching of a bedrock sill initiated the erosion of glaciofluvial deposits that resulted in the exposure of a 75-m-high cliff of erodible sediment. Sandy sediment eroded from the cliff By katabatic winds from the Mackenzie Mountains buried a mature forest growing on alluvial sediments. Despite a minor eolian event between 750 and 860 cal yr A.D., dune development began ca. 1100 cal yr A.D. and has been marked by two major sedimentation periods between ca. 1100 cal yr A.D. and 1460 A.D. and from 1865 to present. Detailed analysis of tree morbidity and mortality indicates that the dune progressed at an average rate of 78 cm/yr for the last century. Dune dynamics are directly related to slope activity that controls the episodic nature of sediment availability and to the katabatic wind regime. Comparison of the dune dynamics and paleoclimatic data suggest a possible influence of warm climate on eolian activity.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlbrandt, T. S. Swinehart, J. B., and Maroney, D. G. (1983). The dynamic Holocene dune fields of the Great Plains and Rocky Mountain Basins, USA. In, “Eolian Sediments and Processes” (Brookfield, M. E. and Ahlbrandt, T. S., Eds.), pp. 379406. Elsevier, Amsterdam/New York.CrossRefGoogle Scholar
Bégin, C. Michaud, Y., and Boucher, S. (1992). Données préliminaires sur la morphologie et le dynamisme récent d’un système dunaire de haut de falaise dans la région de la rivière Mountain, District de Mackenzie, Territoires du Nord-Ouest. Geological Survey of Canada, Paper 92-1B, 1321.Google Scholar
Bélanger, S., and Filion, L. (1991). Niveo-aeolian sand deposition in subarctic dunes, eastern coast of Hudson Bay, Québec, Canada. Journal of Quaternary Science 6 , 2737.Google Scholar
Bigelow, N. Begét, J., and Powers, R. (1990). Latest Pleistocene increase wind intensity recorded in eolian sediments from central Alaska. Quaternary Research 34 , 16016K.Google Scholar
Boucher, S. (1994). “Étude dendrogéomorphologique des glissements pelliculaires dans la région de la rivière Mountain, Territoires du Nord-Ouest.” Master thesis, Université Laval, Québec, 64 p.Google Scholar
Bradley, S.W. Rowe, J. S., and Taraocai, C. (1982). An ecological land survey of the Lockhart River map area, Northwest Territories. In “Ecological Land Classification Series,” No. 16. Lands Directorate, Environment Canada, Ottawa.Google Scholar
Bums, B. M. (1974). The climate of the Mackenzie valley—Beaufort sea. Environment Canada, Climatological Studies (24).Google Scholar
Cook, D. G. and Aitken, J. D, (1975). “Geology of Norman Wells (96E) and Mahony Lake (96F) map areas, District of Mackenzie, N.W.T. Scale 1: 125,000,” Geological Survey of Canada, open file 304.Google Scholar
D’Arrigo, R. D. and Jacoby, G. C. (1992). Dendroclimatic evidence from the northern North America. In “Climate since A.D. 1500” (Bradley, R. S. and Jones, P. D., Eds.), pp. 296311. Routledge, London/New York.Google Scholar
David, P.P. (1981). Stabilized dune ridges in northern Saskatchewan. Canadian Journal of Earth Sciences 18 , 286310.Google Scholar
Delwaide, A. Filion, L., and Payette, S. (1991). Spatiotemporal distribution of light rings in subarctic black spruce, Québec. Canadian Journal of Forest Research 21 , 18281832.Google Scholar
Duk-Rodkin, A., and Hugues, O. L. (1991). Age relationships of Laurentide and montane glaciations, Mackenzie Mountains, Northwest Territories. Géographie Physique et Quaternaire 45 , 7990.Google Scholar
Duk-Rodkin, A., and Hugues, O. L. (1992a). “Surficial geology, Sans Sault Rapids, District of Mackenzie, Northwest Territories,” Geological Survey of Canada, Map 1784A, scale 1:250,000.Google Scholar
Duk-Rodkin, A., and Hugues, O. L. (1992b). Pleistocene montane glaciations in the Mackenzie Mountains, Northwest Territories. Géographie Physique et Quaternaire 46 , 6983.Google Scholar
Dyke, A. S., and Prest, V. K. (1987). Late Wisconsinian and Holocene history of the Laurentide Ice Sheet. Géographie Physique et Quaternaire 41 , 237261.Google Scholar
Filion, L, (1984). A relationship between dunes, fire and climate in the Holocene deposits of Québec. Nature 309 , 543546.Google Scholar
Filion, L. (1987). Holocene development of parabolic dunes in the central St-Lawrence Lowland, Québec. Quaternary Research 28 , 196209.Google Scholar
Filion, L., and Marin, P. (1988). Modifications morphologiques de l’épinette blanche soumise à la sédimentation éolienne en milieu dunaire, Québec subarctique. Canadian Journal of Botany 66, 18621869.Google Scholar
Filion, L. Payette, S. Gauthier, L., and Boutin, Y. (1986). Light rings in subarctic conifers as a dendrochronological tool. Quaternary Research 26 , 272279.Google Scholar
Filion, L. Saint-Laurent, D. Desponts, M., and Payette, S. (1991). The late Holocene record of aeolian and fire activity in northern Québec, Canada. The Holocene 1 , 201208.Google Scholar
Fleagle, R. G. (1950). A theory of air drainage. Journal of Meteorology 7 , 227232.Google Scholar
Heikkinen, O., and Tikkanen, M. (1987). The Kalajoki dune field on the west coast of Finland. Fennia 165 , 241267.Google Scholar
Hétu, B. (1992). Coarse cliff-top aeolian sedimentation in northern Gaspésie, Québec (Canada). Earth Surface Processes and Landforms 17 , 95108.Google Scholar
Holmes, R. L. (1992). “Dendrochronology Program Library User’s Manual.” Laboratory of Tree-Ring Research, University of Arizona, Tucson.Google Scholar
Koster, E. A., and Dijkmans, J. W. A. (1988). Niveo-aeolian deposits and denivation forms, with special reference to the Great Kobuk sand dunes. Northwestern Alaska. Earth Surface Processes and Landforms 13 , 153170.Google Scholar
LaMarche, V. C. Jr. (1974). Paleoclimatic inferences from long tree-ring records. Science 183 , 10431048.Google ScholarPubMed
Luckman, B. H, (1986). Reconstruction of the Little Ice Age events in the Canadian Rocky Mountains. Géographie Physique et Quaternaire 40 , 1728.Google Scholar
Luckman, B. H. (1988). Dating the moraines and recession of Athabasca and Dome glaciers, Alberta, Canada. Arctic and Alpine Research 20 , 4054.Google Scholar
Luckman, B. H. Holdsworth, G., and Osborn, G. D. (1993). Neoglacial glacier fluctuations in the Canadian Rockies. Quaternary Research 39 , 144153.Google Scholar
Manins, P. C., and Sawford, B. L. (1979). Katabatic winds: A field case study. Quaternary Journal of the Royal Meteorological Society 105 , 10111025.Google Scholar
Marin, P., and Filion, L. (1992). Recent dynamics of subarctic dunes as determined by tree-ring analysis of white spruce, Hudson Bay, Quebec. Quaternary Research 38 , 316330.Google Scholar
McKenna Neuman, C. (1990). Observations of winter aeolian transport and niveo-aeolian deposition at Crater Lake, Pangnirtung Pass, N.W.T., Canada. Permafrost and Periglacial Processes 1 , 235247.Google Scholar
McKenna Neuman, C. (1993). A review of aeolian transport processes in cold environments. Progress in Physical Geography 17 , 137155.Google Scholar
Muhs, D. R. (1985). Age and paleoclimatic significance of Holocene sand dune in Northeastern Colorado. Annals of the. Association of American Geographers 75 , 566582.Google Scholar
Nickling, W. G. (1978). Eolian sediment transport during dust storms: Slims River Valley, Yukon Territories. Canadian Journal of Earth Sciences 18 , 10691084.Google Scholar
Nickling, W. G., and Brazel, A. J. (1985). Surface wind characteristics along the icefield ranges, Yukon Territory, Canada. Arctic and Alpine Research 17, 125134.Google Scholar
Osborn, G. D., and Luckman, B. H. (1988). Holocene glacier fluctuations in the Canadian Cordillera (Alberta and British Columbia). Quaternary Science Review 7 , 115128.Google Scholar
Pye, K., and Paine, D. M. (1984). Nature and source of aeolian deposits near the summit of Ben Arkle, Northwest Scotland. Géologic en Mijnbouw 63 , 1318.Google Scholar
Rowe, J. S. (1977). “Forest Regions of Canada.” Canadian Forest Service Publication 1300.Google Scholar
Ruz, M.-H. (1993). Coastal dune development in a thermokarst environment: Some implications for environmental reconstructions, Tuktoyaktuk Peninsula N.W.T. Permafrost and Periglacial Processes 4, 255264.Google Scholar
Ruz, M.-H., and Allard, M. (1994). Foredune development along a subarctic emerging coastline, eastern Hudson Bay, Canada. Marine Geology 117 , 5774.Google Scholar
Stokes, M. A., and Smiley, T. L. (1968). “An Introduction to Tree Ring Dating.” Univ. Chicago Press, Chicago.Google Scholar
Stuart, R. A. Etkin, D. A., and Judge, A. S. (1991). “Recent Observations of Air Temperature and Snow Depth in the Mackenzie Valley Area and Their Implications on the Stability of Permafrost Layers.” Canadian Climate Centre, Atmospheric Environment Service, Report No. 912.Google Scholar
Stuiver, M., and Reimer, P. J. (1993). Extended l4C database revised Calib 3.0 14C age calibration program. Radiocarbon 35 , 215230.Google Scholar
Syvitski, J. P. M., and Hein, F. J. (1991). “Sedimentology of an Arctic Basin: Itirbilung Fjord, Baffin Island, Northwest Territories.” Geological Survey of Canada, Paper 91-11, 66 p.Google Scholar
Szeicz, J. M., and MacDonald, G. M. (1994). Age-dependent tree-ring growth responses of subarctic white spruce to climate. Canadian Journal of Forest Research 24, 120132.Google Scholar
Thorson, R. M., and Bender, G. (1985). Eolian deflation by ancient katabatic winds: A late Quaternary example from the north Alaska Range. Geological Society of America Bulletin 96 , 702709.Google Scholar
Timoney, K. P. La Roi, G. H. Zoltai, S. C., and Robinson, A. L. (1992). The high subarctic Forest-Tundra of northwestern Canada: Position, width, and vegetation gradients in relation to climate. Arctic 45(I), 19.Google Scholar
Trewartha, G. T., and Horn, L. H. (1980). “An Introduction to Climate,” Fifth Ed. McGraw-Hill, New York.Google Scholar
Tyson, P. D. (1968). Velocity fluctuations in the mountain wind. Journal of Atmospheric Environment Science Meteorological Applications Branch, 319.Google Scholar
Wilson, P. (1989). Nature, origin and age of Holocene aeolian sand on Muckish Mountain, Co. Donegal, Ireland. Boreas 18 , 159168.Google Scholar