Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T20:41:53.607Z Has data issue: false hasContentIssue false

Early growth of the last Cordilleran ice sheet deduced from glacio-isostatic depression in southwest British Columbia, Canada

Published online by Cambridge University Press:  20 January 2017

John J. Clague*
Affiliation:
Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada Geological Survey of Canada, Vancouver, BC V6B 5J3, Canada
Duane Froese
Affiliation:
Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
Ian Hutchinson
Affiliation:
Department of Geography, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
Thomas S. James
Affiliation:
Geological Survey of Canada, Pacific Geoscience Centre, Sidney, BC V8L 4B2, Canada
Karen M. Simon
Affiliation:
Department of Earth Sciences, Dalhousie University, Halifax, NS B3H 4J1, Canada
*
*Corresponding author. Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. Fax: +1 604 291 4198.

Abstract

Relative sea level at Vancouver, British Columbia rose from below the present datum about 30,000 cal yr B.P. to at least 18 m above sea level 28,000 cal yr B.P. In contrast, eustatic sea level in this interval was at least 85 m lower than at present. The difference in the local and eustatic sea-level positions is attributed to glacio-isostatic depression of the crust in the expanding forefield of the Cordilleran ice sheet during the initial phase of the Fraser Glaciation. Our findings suggest that about 1 km of ice was present in the northern Strait of Georgia 28,000 cal yr B.P., early during the Fraser Glaciation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E., Hamelin, B., Fairbanks, R.G., (1990). U–Th ages obtained by mass spectrometry in corals from Barbados; sea level during the past 130,000 years. Nature 346, 456458.CrossRefGoogle Scholar
Bloom, A.L., Broecker, W.A., Chappell, J.M.A., Mathews, R.K., Mesolella, K.J., (1974). Quaternary sea level fluctuations on a tectonic coast: new 230Th/234U dates from the Huon Peninsula, New Guinea. Quaternary Research 4, 185205.CrossRefGoogle Scholar
Clague, J.J., (1976). Quadra Sand and its relation to the late Wisconsin glaciation of southwest British Columbia. Canadian Journal of Earth Sciences 13, 803815.Google Scholar
J.J., Clague (1977). Quadra Sand: a study of the late Pleistocene geology and geomorphic history of coastal southwest British Columbia. Geological Survey of Canada, Paper, no. 17-77, .Google Scholar
Clague, J.J., (1983). Glacio-isostatic effects of the Cordilleran ice sheet, British Columbia, Canada. Smith, D.E., Dawson, A.G., Shorelines and Isostasy Academic Press, London., 321343.Google Scholar
J.J., Clague (1989). Quaternary geology of the Canadian Cordillera.In: R.J., Fulton(Ed.), Quaternary Geology of Canada and Greenland, Geological Survey of Canada, Geology of Canada, no. 1, pp. 1596. (also Geological Society of America,The Geology of North America, v. K-1).Google Scholar
Clague, J.J., James, T.S., (2002). History and isostatic effects of the last ice sheet in southern British Columbia. Quaternary Science Reviews 21, 7187.CrossRefGoogle Scholar
Clague, J.J., Harper, J.R., Hebda, R.J., Howes, D.E., (1982). Late Quaternary sea levels and crustal movements, coastal British Columbia. Canadian Journal of Earth Sciences 19, 597618.Google Scholar
Crandell, D.R., Mullineaux, D.R., Waldron, H.H., (1965). Age and origin of the Puget Sound trough in western Washington. Geological Survey Research 1965 U.S. Geological Survey, Professional Paper no. 525-B, B132B136.Google Scholar
Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, J., Gallup, C.D., Cutler, P.M., Burr, G.S., Bloom, A.L., (2003). Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206, 253271.Google Scholar
Dyke, W., Fyles, J.G., (1963). Geological Survey of Canada radiocarbon dates II. Radiocarbon 5, 3955.Google Scholar
Easterbrook, D.J., (1969). Pleistocene chronology of the Puget Lowland and San Juan Islands, Washington. Geological Society of America, Bulletin 80, 22732286.Google Scholar
Fedje, D.W., Josenhans, H., (2002). Drowned forests and archaeology on the continental shelf of British Columbia, Canada. Geology 28, 99102.Google Scholar
Fulton, R.J., Walcott, R.I., (1975). Lithospheric flexure as shown by deformation of glacial lake shorelines in southern British Columbia. Whitten, E.H.T., Quantitative Studies in the Geological Sciences Geological Society of America, Memoir no. 142, 163173.Google Scholar
Fyles, J.G., (1963). Surficial geology of Horne Lake and Parksville map-areas, Vancouver Island, British Columbia. Geological Survey of Canada, Memoir 318, 142 pp.Google Scholar
Hetherington, R., Barrie, J.V., (2003). Late Pleistocene coastal paleogeography of the Queen Charlotte Islands, British Columbia, Canada, and its implications for terrestrial biogeography and early postglacial human occupation. Canadian Journal of Earth Sciences 40, 17551766.Google Scholar
James, T.S., Clague, J.J., Wang, K., Hutchinson, I., (2000). Postglacial rebound at the northern Cascadia subduction zone. Quaternary Science Reviews 19, 15271541.CrossRefGoogle Scholar
Josenhans, H.W., Fedje, D.W., Conway, K.W., Barrie, J.V., (1995). Post glacial sea levels on the western Canadian continental shelf; evidence for rapid change, extensive subaerial exposure, and early human habitation. Marine Geology 125, 7394.Google Scholar
Kitagawa, H., van der Plicht, J., (1998). A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the calibration curve. Radiocarbon 40, 505515.CrossRefGoogle Scholar
Krammer, K., Lange-Bertalot, H., (1986). Sübwasserflora von Mitteleuropa. Bacillariphyceae. 1. Teil: Naviculaceae Gustav Fischer Verlag, Stuttgart., 876 pp.Google Scholar
Krammer, K., Lange-Bertalot, H., (1988). Sübwasserflora von Mitteleuropa. Bacillariphyceae: 2. Teil: Bacillariaceae, Epithemiaceae, Surirelliaceae Gustav Fischer Verlag, Stuttgart., 596 pp.Google Scholar
Krammer, K., Lange-Bertalot, H., (1991a). Sübwasserflora von Mitteleuropa. Bacillariphyceae: 3. Teil: Centrales, Fragilariaceae, Eunotiaceae Gustav Fischer Verlag, Stuttgart., 576 pp.Google Scholar
Krammer, K., Lange-Bertalot, H., (1991b). Sübwasserflora von Mitteleuropa. Bacillariphyceae: 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1-4 Gustav Fischer Verlag, Stuttgart., 436 pp.Google Scholar
J.A., Lowdon, and W., Blake Jr. (1973). Geological Survey of Canada radiocarbon dates: XIII. Geological Survey of Canada, Paper, no. 73-77, . 61 pp.Google Scholar
Mathews, W.H., Fyles, J.G., Nasmith, H.W., (1970). Postglacial crustal movements in southwestern British Columbia and adjacent Washington state. Canadian Journal of Earth Sciences 7, 690702.Google Scholar
Olson, E.A., Broecker, W.S., (1961). Lamont natural radiocarbon measurements: VII. Radiocarbon 3, 141175.Google Scholar
Reineck, H.-E., Singh, I.B., (1980). Depositional Sedimentary Environments with Reference to Terrigenous Clastics. second ed.Springer-Verlag, Berlin., pp. 542.Google Scholar
Round, F.E., Crawford, R.M., Mann, D.G., (1990). The Diatoms: Biology and Morphology of the Genera. Cambridge Univ. Press, Cambridge., pp. 747.Google Scholar
Thorson, R.M., (1989). Glacio-isostatic response of the Puget Sound area, Washington. Geological Society of America Bulletin 101, 11631174.2.3.CO;2>CrossRefGoogle Scholar
Witkowski, A., Lange-Bertalot, H., Metzelin, D., (2000). Diatom Flora of Marine Coasts: I. A.R.G. Gantner Verlag K.G., Florida., 9491 Ruggell. pp. 925.Google Scholar
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., Fifield, L.K., (2000). Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713716.Google Scholar
Yokoyama, Y., De Deckker, P., Lambeck, K., Johnston, P., Fifield, L.K., (2001). Sea-level at the Last Glacial Maximum: evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 281297.Google Scholar