Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T02:50:05.151Z Has data issue: false hasContentIssue false

Ecology and paleoenvironmental application of testate amoebae in peatlands of the high-elevation Colombian páramo

Published online by Cambridge University Press:  18 February 2019

Bing Liu
Affiliation:
Earth & Environmental Science Department, Lehigh University, Bethlehem, Pennsylvania 18015, USA School of Geography, South China Normal University, Guangzhou, GD, China.
Robert K. Booth*
Affiliation:
Earth & Environmental Science Department, Lehigh University, Bethlehem, Pennsylvania 18015, USA
Jaime Escobar
Affiliation:
Departamento de Ingeniería Civil y Ambiental, Universidad del Norte, Km 5 Vía Puerto Colombia, Colombia Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Balboa, Panama
Zhiqiang Wei
Affiliation:
Earth & Environmental Science Department, Lehigh University, Bethlehem, Pennsylvania 18015, USA School of Geography, South China Normal University, Guangzhou, GD, China.
Broxton W. Bird
Affiliation:
Department of Earth Sciences, Indiana University–Purdue University, Indianapolis, Indiana, USA
Andres Pardo
Affiliation:
Instituto de Investigaciones en Estratigrafía, Universidad de Caldas, Manizales, Colombia
Jason H. Curtis
Affiliation:
Department of Geological Sciences, University of Florida, Gainesville, Florida 32611, USA
Jun Ouyang
Affiliation:
School of Geography, South China Normal University, Guangzhou, GD, China.
*
*Corresponding author e-mail address: rkb205@lehigh.edu

Abstract

We investigated the ecology and paleoecology of testate amoebae in peatlands of the Colombian páramo to assess the use of testate amoebae as paleoenvironmental indicators. Objectives were to (1) identify environmental controls on testate amoebae, (2) develop transfer functions for paleoenvironmental inference, and (3) examine testate amoebae in a Holocene peat core and compare our findings with other proxy records. Results from 96 modern samples indicate that testate amoebae are sensitive to pH and surface moisture, and cross-validation of transfer functions indicates potential for paleoenvironmental applications. Testate amoebae from the Triunfo Peatland in the Central Cordillera provided a proxy record of pH and water-table depth for the late Holocene, and inferred changes were correlated with peat C/N measurements during most of the record. Comparison with a lake-level reconstruction suggests that at least the major testate amoeba–inferred changes were driven by climate. Our work indicates that testate amoebae are useful paleoenvironmental indicators in high-elevation tropical peatlands.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amesbury, M.J., Swindles, G.T., Bobrov, A., Charman, D.J., Holden, J., Lamentowicz, M., Mallon, G., et al. , 2016. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quaternary Science Reviews 152, 132151.Google Scholar
Baker, P.A., Fritz, S.C., 2015. Nature and causes of Quaternary climate variation of tropical South America. Quaternary Science Reviews 124, 3147.Google Scholar
Bakker, J., Olivera, M.M., Hooghiemstra, H., 2008. Holocene environmental change at the upper forest line in northern Ecuador. The Holocene 18, 877893.Google Scholar
Baruch, Z., 1984. Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan páramos. Vegetatio 55, 115126.Google Scholar
Bird, B.W., Rudloff, O, Escobar, J., Gilhooly, W.P. III, Correa-Metrio, A., Vélez, M., Polissar, P.J., 2018. Paleoclimate support for a persistent dry island effect in the Colombian Andes during the last 4700 years. The Holocene 28, 217228.Google Scholar
Blaauw, M, Christen, J. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Bogota-A, R.G., Groot, M.H.M., Hooghiemstra, H., Lourens, L.J., Van der Linden, M., Berrio, J.C., 2011. Rapid climate change from north Andean Lake Fuquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quaternary Science Reviews 30, 33213337.Google Scholar
Booth, R.K., 2001. Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands: implications for paleoecology and environmental monitoring. Wetlands 21, 564576.Google Scholar
Booth, R.K., 2008. Testate amoebae as proxies of mean annual water-table depth in Sphagnum-dominated peatlands of North America. Journal of Quaternary Science 23, 4357.Google Scholar
Booth, R.K., 2010. Testing the climate sensitivity of peat-based paleoclimate reconstructions in mid-continental North America. Quaternary Science Reviews 29, 720731.Google Scholar
Booth, R.K., Jackson, S.T., Sousa, V.A., Sullivan, M.E., Minckley, T.A., Clifford, M.J., 2012. Multidecadal drought and amplified moisture variability drove rapid forest community change in a humid region. Ecology 93, 219226.Google Scholar
Booth, R.K., Lamentowicz, M., Charman, D.J., 2010. Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires and Peat 7, 17.Google Scholar
Bosman, A.F., Hooghiemstra, H., Cleef, A.M., 1994. Holocene mire development and climatic change from a high Andean Plantago rigida cushion mire. The Holocene 4, 233243.Google Scholar
Buytaert, W., Celleri, R., De Bievre, B., Cisneros, F., Wyseure, G., Deckers, J., Hofstede, R., 2006. Human impact on the hydrology of the Andean Páramos. Earth-Science Reviews 79, 5372.Google Scholar
Buytaert, W., Cuesta-Camacho, F., Tobón, C., 2011. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography 20, 1933.Google Scholar
Calder, W.J., Shuman, B., 2017. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado. Ecology 98, 25852600.Google Scholar
Cardona, V., Monroy, D., 2015. Datación, petrografía y morfología de las tefras acumuladas en el registro Holocénico (0–4973 anos) del humedal El Triunfo (Parque Nacional Los Nevados). Undergraduate honors thesis, Universidad de Caldas, Manizales, Colombia. 76 p.Google Scholar
Chardez, D., 1969. Le genre Phryganella Penard (Protozoa, Rhizopoda, Testacea). Bulletin de la Station de Recherche Agronomique de Gembloux 4, 315322.Google Scholar
Charman, D.J., 1997. Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. Journal of the Royal Society of New Zealand 27, 465483.Google Scholar
Charman, D.J., 2001. Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quaternary Science Reviews 20, 1753-1764.Google Scholar
Charman, D.J., Hendon, D., Woodland, W.A., 2000. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats. Quaternary Research Association, London.Google Scholar
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., et al. , 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351364.Google Scholar
Cincotta, R.P., Wisnewski, J., Engelman, R., 2000. Human population in the biodiversity hotspots. Nature 404, 990992.Google Scholar
Cleef, A.M., 1981. The Vegetation of the Páramos of the Colombian Cordillera Oriental. Dissertationes Botanicae 61. J. Cramer, Vaduz, Liechtenstein.Google Scholar
Clifford, M.J., Booth, R.K., 2015. Late-Holocene drought and fire drove a widespread change in forest community composition in eastern North America. The Holocene 25, 11021110.Google Scholar
Deflandre, G., 1928. Le genre Arcella Ehrenberg. Morphologie-Biologie. Essai phylogénétique et systématiqe. Archiv für Protistenkunde 64, 152287Google Scholar
Deflandre, G., 1932. Paraquadrula nov. gen. irregularis (Archer). Conjugaison et enkystement: Comptes rendus hebdomadaires des Séances de la Société de Biologie et de ses filiales et associées (Paris), 109, 13461347.Google Scholar
Ehrenberg, G.C., 1840. Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Abhandlungen der Königliche Akademie der Wissenschaften zu Berlin (1838), pp. 59–147.Google Scholar
Flantua, S., Hooghiemstra, H., Vuille, M., Behling, H., Carson, J.F., Gosling, W. D., Hoyos, I., et al. , 2016. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Climate of the Past 12, 483523.Google Scholar
Giraldo-Giraldo, M.J., Velásquez-Ruiz, C.A., Pardo-Trujillo, A., 2017. Late-Holocene pollen-based paleoenvironmental reconstruction of the El Triunfo wetland, Los Nevados National Park (Central Cordillera of Colombia). The Holocene 28, 183194.Google Scholar
Gonzalez, H., 2001. Geologia de las Planchas 206 Manizales y 225 Nevado del Ruiz. Ministerio de Minas y Energia, INGEOMINAS, Bogotá D.C., Colombia. 93 p.Google Scholar
González-Carranza, Z., Hooghiemstra, H., Vélez, M.I., 2012. Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene. The Holocene 22, 1227–1241.Google Scholar
Grabandt, R., 1990. Presence and ecological range of some algae, Testacea and fungal remains in moss samples of Colombian páramo vegetation. In: Rabassa, J., Salemme, M. (Eds.), Quaternary of South America and Antarctic Peninsula, Vol. 8. Balkema, Rotterdam, pp. 85105.Google Scholar
Grimm, E.C., 1987. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.Google Scholar
Herd, D., 1982. Glacial and Volcanic Geology of the Ruiz—Tolima Volcanic Complex, Cordillera Central, Colombia. Instituto Nacional de Investigaciones Geologico-Mineras Pres, Bogotá, Colombia. 48 p.Google Scholar
Hughes, P.D.M., Mallon, G., Brown, A., Essex, H.J., Stanford, J.D., Hotes, S., 2013. The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities. Quaternary Science Reviews 67, 160175.Google Scholar
Instituto Alexander Von Humboldt, 2012. Identificación cartográfica de los páramos de Colombia a escala 1:100.000 (versión a junio de 2012). Proyecto: Actualización del Atlas de Páramos de Colombia. Convenio Interadministrativo de Asociación 11-103, Instituto de investigación de recursos biológicos Alexander von Humboldt y Ministerio de Ambiente y Desarrollo Sostenible, Bogotá D.C., Colombia.Google Scholar
Juggins, S., 2003. C2 Software for Ecological and Palaeoecological Data Analysis and Visualization. University of Newcastle, Newcastle-upon-Tyne, UK.Google Scholar
Juggins, S., 2013. Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quaternary Science Reviews 64, 2032.Google Scholar
Kerr, A.C., Tarney, J., 2005. Tectonic evolution of the Caribbean and northwestern South America: the case for accretion of two Late Cretaceous oceanic plateaus. Geology 33, 269272.Google Scholar
Koenig, I., Schwendener, F., Mulot, M., Mitchell, E.A.D., 2017. Response of Sphagnum testate amoebae to drainage, subsequent re-wetting and associated changes in the moss carpet: results from a three year mesocosm experiment. Acta Protozoologica 56, 191210.Google Scholar
Kummu, M., Varis, O., 2010. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Applied Geography 31, 495507.Google Scholar
Kruskal, J.B., 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115129.Google Scholar
Lamarre, A., Magnan, G., Garneau, M., Boucher, É., 2013. A testate amoeba-based transfer function for paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada. Quaternary International 306, 8896.Google Scholar
Lamentowicz, Ł., Lamentowicz, M., Gąbka, M., 2008. Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands 28, 164175.Google Scholar
Lamentowicz, M., Mitchell, E.A.D., 2005. The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microbial Ecology 50, 4863.Google Scholar
Leidy, J., 1879. Fresh-water Rhizopods of North America. Report of the United States Geological Survey of the Territories, Vol. 12. U.S. Government Printing Office, Washington, DC. 324 p.Google Scholar
Li, H., Wang, S., Zhao, H., Wang, M., 2015. A testate amoebae transfer function from Sphagnum-dominated peatlands in the Lesser Khingan Mountains, NE China. Journal of Paleolimnology 54, 189203.Google Scholar
Loeblich, A.R. Jr., Tappan, H., 1961. Remarks on the systematics of the Sarkodina (Protozoa) renamed homonyms and new and validated genera. Proceedings of the Biological Society of Washington 74, 213234.Google Scholar
Luteyn, J.L., 1999. Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden, 84. 278 p.Google Scholar
Marchant, R., Behling, H., Berrio, J.C., Cleef, A., Duivenvoorden, J., Hooghiemstra, H., Kuhry, P., et al. , 2001. Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quaternary Science Reviews 20, 12891308Google Scholar
Markel, E., Booth, R.K., Qin, Y., 2010. Testate amoebae and δ13C of Sphagnum as surface-moisture proxies in Alaskan peatlands. The Holocene 20, 463475.Google Scholar
Marlon, J.R., Bartlein, P.J., Daniau, A.-L., Harrison, S.P., Maezumi, S.Y., Power, M.J., Tinner, W., Vanniére, B., 2013. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quaternary Science Reviews 65, 525.Google Scholar
Marlon, J.R., Pederson, N., Nolan, C., Goring, S., Shuman, B., Booth, R., Bartlein, P., et al. , 2017. Temperature and hydroclimatic histories of the northeastern United States during the past 3000 years and their ecological implications. Climate of the Past 13, 13551379.Google Scholar
Martinez, J.I., Obrochta, S., Yokoyama, Y., Battarbee, R.W., 2015. Atlantic Multidecadal Oscillation (AMO) forcing on the late Holocene Cauca paleolake dynamics, northern Andes of Colombia. Climate of the Past 11, 26492664.Google Scholar
McCune, B., Grace, J.B., Urban, D.L., 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.Google Scholar
McCune, B., Mefford, M.J., 2011. PC-ORD. Multivariate Analysis of Ecological Data. Version 6 [computer software]. MjM Software, Gleneden Beach, OR.Google Scholar
Mesa, O., Poveda, G., Carvajal, L., 1997. Introducción al clima de Colombia. Universidad Nacional de Colombia, Bogotá, Colombia. 390 p.Google Scholar
Meyers, P.A., Ishiwatari, R., 1993. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, 867900.Google Scholar
Mitchell, E.A.D., Charman, D.J., Warner, B.G., 2008. Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodiversity and Conservation 17, 21152137.Google Scholar
Montoya, E., Rull, V., van Geel, B., 2010. Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeography Palaeoclimatology Palaeoecology 297, 169183.Google Scholar
Munoz, P., Gorin, G. Parra, N., Velásquez, C., Lemus, D., Monsalve-M, C., Jojoa, M., 2017. Holocene climatic variations in the Western Cordillera of Colombia: a multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ, Quaternary Science Reviews 155, 159178.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853858Google Scholar
Ogden, C.G., 1979. Siliceous structures secreted by members of the subclass Lobosia (Rhizopodea: Protozoa). Bulletin of the British Museum of Natural History (Zoology) 36, 203207.Google Scholar
Ogden, C.G., 1980. Aspects of shell structure in genus Difflugia (Rhizopodea). Journal of Protozoology 27, 57A58A.Google Scholar
Opravilova, V., Hajek, M., 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the western Carpathians. Acta Protozoologica 45, 191204.Google Scholar
Payne, R., Blackford, J., 2008. Distal volcanic impacts on peatlands: palaeoecological evidence from Alaska. Quaternary Science Reviews 27, 2122.Google Scholar
Payne, R.J., Charman, D.J., Matthews, S., Eastwood, W.J., 2008. Testate amoebae as palaeohydrological proxies in sürmene ağaçbaşi yaylasi peatland (northeast Turkey). Wetlands 28, 311323.Google Scholar
Payne, R.J., Telford, R.J., Blackford, J.J., Blundell, A., Booth, R.K., Charman, D.J., Lamentowicz, Ł., et al. , 2012. Testing peatland testate amoeba transfer functions: appropriate methods for clustered training-sets. The Holocene 22, 819825.Google Scholar
Penard, E., 1902. Les Rhizopodes du bassin du Léman Kündig, Genève, Kundig ed., 714 p.Google Scholar
Penard, E., 1910. Rhizopodes nouveaux. Revue suisse de zoologie 17, fasc. 4, pp. 929–940.Google Scholar
Playfair, G.I., 1917. Rhizopods of Sydney and Lismore. Proceedings of the Linnean Society of New South Wales 42, 633675.Google Scholar
Poveda, G., Alvarez, D.M., Rueda, O.A., 2011. Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots. Climate Dynamics 36, 22332249Google Scholar
Poveda, G., Jaramillo, A., Gil, M., Quiceno, N., Mantilla, R., 2001. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resources Research 37, 21692178.Google Scholar
Poveda, G., Mesa, O., 2004. On the existence of Lloro (the rainiest locality on Earth): enhanced ocean–atmosphere–land interaction by a low-level jet. Geophysical Research Letters 27, 16751678.Google Scholar
Poveda, G., Vélez, J.I., Mesa, O., Hoyos, C.D., Mejía, J.F., Barco, O., Correa, P.L., 2002. Influencia de fenómenos macro-climáticos sobre el ciclo anual de la hidrología colombiana: cuantificación lineal, no lineal, y percentiles probabilísticos. Meteorología Colombiana 6, 121130.Google Scholar
Qin, Y., Mitchell, E.A.D., Lamentowicz, M., Payne, R.J., Lara, E., Gu, Y., Huang, X., Wang, H., 2013. Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction. Journal of Paleolimnology 50, 319330.Google Scholar
Schönborn, W., Peschke, T., 1990. Evolutionary studies on the Assulina-Valkanovia complex (Rhizopoda, Testaceafilosia) in Sphagnum and soil. Biology and Fertility of Soils 9, 95100.Google Scholar
Sklenář, P., Luteyn, J.L., Ulloa Ulloa, C., Jørgensen, P.M., Dillon, M.O., 2005. Flora generica de los paramos; Guia ilustrada de las plantas vasculares. Memoirs of the New York Botanical Garden 92. 499 p.Google Scholar
Song, L., Li, H., Wang, K., Wu, D., Wu, H., 2014. Ecology of testate amoebae and their potential use as palaeohydrologic indicators from peatland in Sanjiang Plain, Northeast China. Frontiers of Earth Science 8, 564572.Google Scholar
Spikings, R.A., Cochran, R., Villagomez, D., van der Lelij, R., Vallejo, C., Winker, W., Beate, B., 2015. The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290-75 Ma). Gondwana Research 27, 96139.Google Scholar
Swindles, G.T., Amesbury, M.J., Turner, T.E., Carrivick, J.L., Woulds, C., Raby, C., Mullan, D., et al. , 2015. Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands. Palaeogeography Palaeoclimatology Palaeoecology 424: 111122.Google Scholar
Swindles, G.T., Charman, D.J., Roe, R.M., Sansum, P.A., 2009. Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: implications for Holocene palaeoclimate studies. Journal of Paleolimnology 42, 123140.Google Scholar
Swindles, G.T., Lamentowicz, M., Reczuga, M., Galloway, J.M., 2016. Palaeoecology of testate amoebae in a tropical peatland. European Journal of Protistology 55, 181189.Google Scholar
Swindles, G.T., Kelly, T.J., Roucoux, K.H., Lawson, I.T., 2018a. Response of testate amoebae to a late Holocene ecosystem shift in an Amazonian peatland. European Journal of Protistology 64, 1319.Google Scholar
Swindles, G.T., Morris, P.J., Whitney, B., Galloway, J.M., Gatka, M., Gallego-Sala, A., Macumber, A.L., et al. , 2018b. Ecosystem state shifts during long-term development of an Amazonian peatland. Global Change Biology 24, 738757.Google Scholar
Swindles, G.T., Reczuga, M., Lamentowicz, M., Raby, C.L., Turner, T.E., Charman, D.J., Gallego-Sala, A., et al. , 2014. Ecology of testate amoebae in an Amazonian peatland and development of a transfer function for palaeohydrological reconstruction. Microbial Ecology 68, 284298.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2018. CALIB 7.1 [www program] (accessed March 15, 2018). http://calib.org.Google Scholar
Van Bellen, S., Mauquoy, D., Payne, R.J., Roland, T.P., Daley, T.J., Hughes, P.D.M., Loader, N.J., Street-Perrott, F.J., Rice, E.M., Pancotto, V.A., 2014. Testate amoebae as a proxy for reconstructing Holocene water table dynamics in southern Patagonian peat bogs. Journal of Quaternary Science 29, 463474.Google Scholar
Velásquez, C., Hooghiemstra, H., 2013. Pollen-based 17-kyr forest dynamics and climate change from the Western Cordillera of Colombia; no-analogue associations and temporarily lost biomes. Review of Paleobotany and Palynology 194, 3849.Google Scholar
Vuilleumier, F., Monasterio, M., 1986. High Altitude Tropical Biogeography. Oxford University Press, Oxford.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., et al. , 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 17911828.Google Scholar
Wilmshurst, J.M., Wiser, S.K., Charman, D.J., 2003. Reconstructing Holocene water tables in New Zealand using testate amoebae: differential preservation of tests and implications for the use of transfer functions. The Holocene 13, 6172.Google Scholar
Woodland, W.A., Charman, D.J., Sims, P.C., 1998. Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. The Holocene 8, 261–27.Google Scholar