Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T05:44:08.018Z Has data issue: false hasContentIssue false

Effect of aridity and rainfall seasonality on vegetation in the southern tropics of East Africa during the Pleistocene/Holocene transition

Published online by Cambridge University Press:  20 January 2017

Sarah J. Ivory*
Affiliation:
University of Arizona – Department of Geosciences, Tucson, AZ, USA
Anne-Marie Lézine
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CNRS, CEA UVSQ, Orme des Merisiers, 91191 Gif-sur-Yvette cedex, France
Annie Vincens
Affiliation:
CEREGE, UMR 6635 (CNRS, Université Aix-Marseille, IRD, CdF), BP 80, F-13545 Aix-en-Provence, cedex 04, France
Andrew S. Cohen
Affiliation:
University of Arizona – Department of Geosciences, Tucson, AZ, USA
*
*Corresponding author. Fax: + 1 520 621 2672. E-mail address:ivorysj@email.arizona.edu (S.J. Ivory).

Abstract

Fossil pollen analyses from northern Lake Malawi, southeast Africa, provide a high-resolution record of vegetation change during the Pleistocene/Holocene transition (~ 18–9 ka). Recent studies of local vegetation from lowland sites have reported contrasting rainfall signals during the Younger Dryas (YD). The Lake Malawi record tracks regional vegetation changes and allows comparison with other tropical African records identifying vegetation opening and local forest maintenance during the YD. Our record shows a gradual decline of afromontane vegetation at 18 ka. Around 14.5 ka, tropical seasonal forest and Zambezian miombo woodland became established. At ~ 13 ka, drier, more open formations gradually became prevalent. Although tropical seasonal forest taxa were still present in the watershed during the YD, this drought-intolerant forest type was likely restricted to areas of favorable edaphic conditions along permanent waterways. The establishment of drought-tolerant vegetation followed the reinforcement of southeasterly tradewinds resulting in a more pronounced dry winter season after ~ 11.8 ka. The onset of the driest, most open vegetation type was coincident with a lake low stand at the beginning of the Holocene. This study demonstrates the importance of global climate forcing and local geomorphological conditions in controlling vegetation distribution.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, P., Leng, M.J., Gasse, F., Huang, Y., (2007). Century-to-millennial scale climatic variability in Lake Malawi revealed by isotope records. Earth and Planetary Science Letters 261, 93103.CrossRefGoogle Scholar
Barker, P., Williamson, D., Gasse, F., Gibert, E., (2003). Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko. Quaternary Research Tanzania. 60, 368376.CrossRefGoogle Scholar
Beuning, K.R.M., (1997). Late-glacial and holocene vegetation, climate and hydrology of Lakes Albert and Victoria, East Africa . PhD Thesis, University of Minnesota, .Google Scholar
Bonnefille, R., (1971a). Atlas des pollens d'Ethiopie, principales espèces des forêts de montagne. Pollen et Spores 13, 1572.Google Scholar
Bonnefille, R., (1971b). Atlas des pollens d'Éthiopie. Pollens actuels de la Basse Vallée de l'Omo, récoltes botaniques 1968. Adansonia 2, 463518.Google Scholar
Bonnefille, R., Riollet, G., (1980). Pollens des savanes d'Afrique orientale. CNRS, Paris.Google Scholar
Bonnefille, R., Riollet, G., Buchet, G., Icole, M., LaFont, R., Arnold, M., Jolly, D., (1995). glacial–interglacial record from intertropical Africa, high resolution pollen and carbon data at Rusaka, Burundi. Quaternary Science Reviews 14, 917936.Google Scholar
Brown, E.T., Johnson, T.C., Scholz, C.A., Cohen, A.S., King, J.W., (2007). Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophysical Research Letters 34, L20702.Google Scholar
Brown, E.T., Johnson, T.C., Scholz, C.A., Cohen, A.S., King, J.W., (2008). Reply to comment by Yannick Garcin on “Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years”. Geophysical Research Letters 35, L04702.CrossRefGoogle Scholar
Castañeda, I.S., Werne, J.P., Johnson, T.C., (2007). Wet and arid phases in the southeast African tropics since the Last Glacial Maximum. Geology 35, 823826.Google Scholar
Coetzee, J.A., (1967). Pollen analytical studies in East and Southern Africa. Paleoecology of Africa 3, 1146.Google Scholar
Cohen, A.S., Stone, J.R., Beuning, K.R.M., Park, L., Reinthal, P., Dettman, D., Scholz, C., Johnson, T., King, J., Talbot, M., Brown, E., Ivory, S., (2007). Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences 104, 1642216427.CrossRefGoogle ScholarPubMed
Collins, J., Schefuß, E., Heslop, D., Mulitza, S., Prange, M., Zabel, M., Tjallingii, R., Dokken, T., Huang, E., Mackensen, A., Schulz, M., Tian, J., Zarriess, M., Wefer, G., (2011). Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nature Geoscience 4, 4245.Google Scholar
DeBusk, G.H., (1994). Transport and stratigraphy of pollen in Lake Malawi, Africa . PhD Thesis, Duke University, .Google Scholar
DeBusk, G.H., (1997). The distribution of pollen in the surface sediments of Lake Malawi, Africa, and the transport of pollen in large lakes. Review of Palaeobotany and Palynology 97, 123153.Google Scholar
DeBusk, G.H., (1998). A 37,500-year pollen record from Lake Malawi and implications for the biogeography of afromontane forests. Journal of Biogeography 25, 479500.Google Scholar
DeMenocal, P., Ortiz, J., Guilderson, T., Sarnthein, M., (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, 347361.Google Scholar
Dupont, L., Behling, H., (2006). Land–sea linkages during deglaciation: high-resolution records from the eastern Atlantic off the coast of Namibia and Angola (ODP site 1078). Quaternary International 148, 1928.Google Scholar
Eccles, D.H., (1974). An outline of the physical limnology of Lake Malawi (Lake Nyasa). Limnology and Oceanography 19, 730742.CrossRefGoogle Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. Wiley, Chichester, UK.Google Scholar
Fairbanks, R., Mortlock, R., Chiu, T., Cao, L., Kaplan, A., Guilderson, T., Fairbanks, T., Bloom, A., Grootes, P., Nadeau, M., (2005). Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 25, 17811796.Google Scholar
Filippi, M.L., Talbot, M.R., (2005). The palaeolimnology of northern Lake Malawi over the last 25 ka based upon the elemental and stable isotopic composition of sedimentary organic matter. Quaternary Science Reviews 24, 13031328.Google Scholar
Finney, B., Johnson, T., (1991). Sedimentation in Lake Malawi (East Africa) during the last 10,000 years: a continuous paleoclimatic record from the southern tropics. Palaeogeography, Palaeoclimatology, Palaeoecology 85, 351366.CrossRefGoogle Scholar
Gajewski, K., Lézine, A.M., Vincens, A., Delestan, A., Sawada, M., & the African Pollen Database,(2002). Modern climate–vegetation–pollen relations in Africa and adjacent areas. Quaternary Science Reviews 21, 16111631.Google Scholar
Garcin, Y., (2008). Comment on “Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years” by E. T. Brown, T. C. Johnson, C. A. Scholz, A. S. Cohen, and J. W. King. Geophysical Research Letters 35, L04701.Google Scholar
Garcin, Y., Vincens, A., Williamson, D., Buchet, G., Guiot, J., (2007). Abrupt resumption of the African Monsoon at the Younger Dryas–Holocene climatic transition. Quaternary Science Reviews 26, 690704.Google Scholar
Garcin, Y., Vincens, A., Williamson, D., Guiot, J., Buchet, G., (2006). Wet phases in tropical southern Africa during the last glacial period. Geophysical Research Letters 33, L07703.CrossRefGoogle Scholar
Gasse, F., (2000). Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, 189211.CrossRefGoogle Scholar
Gasse, F., Chalié, F., Vincens, A., Williams, M.A., Williamson, D., (2008). Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews 27, 23162340.CrossRefGoogle Scholar
Grimm, E.C., (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.Google Scholar
Grimm, E., (1990). TILIA and TILIAGRAPH: PC spreadsheet and graphic software for pollen data. INQUA Holocene Working Groups on data-handling methods. Newsletter 4, 57.Google Scholar
Haug, G., Hughen, K., Sigman, D., Peterson, L., Röhl, U., (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Hély, C., Bremond, L., Alleaume, S., Smith, B., Sykes, M., Guiot, J., (2006). Sensitivity of African biomes to changes in the precipitation regime. Global Ecology and Biogeography 15, 258270.Google Scholar
Hemming, S.R., (2004). Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, RG1005.Google Scholar
Hooghiemstra, H., (1988). Changes of major wind belts and vegetation zones in NW Africa 20,000–5000 yr B.P., as deduced from a marine pollen record near Cap Blanc. Reviews of Palaeobotany and Palynology 55, 101140.CrossRefGoogle Scholar
Johnson, T.C., Brown, E., McManus, J., Barry, S., Barker, P., Gasse, F., (2002). A high-resolution paleoclimate record spanning the past 25,000 years in southern east Africa. Science 296, 113116.Google Scholar
Johnson, T.C., Ng'ang'a, P., ('ang'a, 1990). Reflections on a Rift Lake. Katz, B.J., Lacustrine Basin Exploration. American Association of Petroleum Geologists Memoir 50, 113135.Google Scholar
Jolly, D., Haxeltine, A., (1997). Effect of low glacial atmospheric CO2 on tropical African montane vegetation. Science 276, 786788.Google Scholar
Lea, D., Pak, D., Peterson, L., Hughen, K., (2003). Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, 13611364.Google Scholar
Leroux, M., (2001). The Meteorology and Climate of Tropical Africa. Springer, Praxis Publishing, London.(New York; Chichester, UK).Google Scholar
Livingstone, D.A., (1967). Postglacial vegetation of the Ruwenzori Mountains in equatorial Africa. Ecological Monographs 37, 2552.CrossRefGoogle Scholar
Livingstone, D.A., Clayton, W., (1980). An altitudinal cline in tropical African grass floras and its paleoecological significance. Quaternary Research 13, 392402.Google Scholar
Malawi Government, . (1983). The National Atlas of Malawi. National Atlas Committee and Department of Surveys of Malawi. National Atlas Committee and Department of Surveys, Malawi.Google Scholar
Maley, J., (1970). Contributions – l'"tude du bassin tchadien : atlas de pollens du Tchad. Bulletin du Jardin Botanique National de Belgique 40, 2948.Google Scholar
McGlue, M., Lezzar, K., Cohen, A., Russell, J., Tiercelin, J., Felton, A., Mbede, E., Nkotagu, H., (2008). Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. Paleolimnology 40, 635653.Google Scholar
Patterson, G., Kachinjika, O., (1995). Effect of wind-induced mixing on the vertical distribution of nutrients and phytoplankton in Lake Malawi. Menz, A., Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa. Natural Resources Institute, Chatham, UK.Google Scholar
Polhill, R.M., (1966). Flora of Tropical East Africa. Hubbard, C.E., Milne-Redhead, E., Crown Agents for Oversea Governments and Administrations, London.Google Scholar
Powers, L.A., Johnson, T.C., Werne, J.P., Casta"eda, I., Hopmans, E., Sinninghe-Damste, J., Schouten, S., (2005). Large temperature variability in the southern African tropics since the Last Glacial Maximum. Geophysical Research Letters 32, L08706.Google Scholar
Ryner, M.A., Bonnefille, R., Holmgren, K., Muzuka, A., (2006). Vegetation changes in Empakaai Crater, northern Tanzania, at 14,800–9300 cal yr BP. Review of Palaeobotany and Palynology 140, 163174.Google Scholar
Schefuß, E., Schouten, S., Schneider, R., (2005). Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 10031006.Google Scholar
Scholz, C.A., Johnson, T.C., Cohen, A.S., King, J., Peck, J., Overpeck, J., Talbot, M., Brown, E., Kalindekafe, L., Amoako, P., Lyons, R., Shanahan, T., Castañeda, I., Heil, C., Forman, S., McHargue, L., Beuning, K., Gomez, J., Pierson, J., (2007). East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proceedings of the National Academy of Sciences 104, 1641616421.Google Scholar
Scholz, C.A., Cohen, A.S., Johnson, T.C., King, J., Talbot, M.R., Brown, E.T., (2010). Scientific drilling in the Great Rift Valley: The 2005 Lake Malawi Scientific Drilling Project - An overview of the past 145,000 years of climate variability in Southern Hemisphere East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 303, 319.Google Scholar
Sonzogni, C., Bard, E., Rostek, F., (1998). Tropical sea-surface temperatures during the last glacial period: a view based on alkenones in Indian Ocean sediments. Quaternary Science Reviews 17, 11851201.Google Scholar
Stager, J., Ryves, D., Chase, B., Pausata, F., (2011). Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science 311, 12991302.Google Scholar
Street-Perrott, F.A., Huang, Y., Perrott, R.A., Eglinton, G., Barker, P., Khelifa, L.B., Harkness, D., Olago, D., (1997). Impact of lower atmospheric CO2 on tropical mountain ecosystems. Science 278, 14221426.Google Scholar
Talbot, M., Filippi, M., Jensen, N., Tiercelin, J.-J., (2007). An abrupt change in the African monsoon at the end of the Younger Dryas. Geochemistry, Geophysics, Geosystems 8, Q3005.Google Scholar
Tierney, J.E., Russell, J.M., (2007). Abrupt climate change in southeast tropical Africa influenced by Indian monsoon variability and ITCZ migration. Geophysical Research Letters 34, L15709.Google Scholar
Tierney, J.E., Russell, J.M., Huang, Y., Sinninghe Damsté, J., Hopmans, E., Cohen, A., (2008). Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252255.Google Scholar
Van Zinderen Bakker, E., Butzer, K., (1973). Quaternary environmental changes in southern Africa. Soil Science 116, 236248.Google Scholar
Vincens, A., (1983). Palynologie, environnements actuels et plio-pleistocènes à l'Est du lac Turkana (Kenya). PhD Thesis, University of Aix-Marseille II, .Google Scholar
Vincens, A., (1989). Paleoenvironnements du bassin Nord-Tanganyika (Zaire, Burundi, Tanzanie) au cours des 13 derniers mille ans: Apport de la palynologie. Review of Palaeobotany and Palynology 61, 6988.Google Scholar
Vincens, A., (1991). Late quaternary vegetation history of the South-Tanganyika basin. Climatic implications in South Central Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 86, 207226.Google Scholar
Vincens, A., (1993). Nouvelle séquence pollinique du lac Tanganyika: 30,000 ans d'histoire botanique et climatique du bassin Nord. Review of Palaeobotany and Palynology 78, 381394.Google Scholar
Vincens, A., Bremond, L., Brewer, S., Buchet, G., Dussouillez, P., (2006). Modern pollen-based biome reconstructions in East Africa expanded to southern Tanzania. Reviews of Palaeobotany and Palynology 140, 187212.Google Scholar
Vincens, A., Buchet, G., Williamson, D., Taieb, M., (2005). A 23,000 yr pollen record from Lake Rukwa (8°S, SW Tanzania): new data on vegetation dynamics and climate in Central Eastern Africa. Review of Palaeobotany and Palynology 137, 147162.Google Scholar
Vincens, A., Garcin, Y., Buchet, G., (2007a). Influence of rainfall seasonality on African lowland vegetation during the late Quaternary: pollen evidence from Lake Masoko, Tanzania. Journal of Biogeography 34, 12741288.Google Scholar
Vincens, A., Lezine, A.-M., Buchet, G., Lewden, D., Le Thomas, A., and contributors(2007b). African pollen database inventory of tree and shrub pollen types. Review of Palaeobotany and Palynology 145, 135141.Google Scholar
White, F., (1983). Vegetation of Africa—a descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa. Natural Resources Research Report XX. UNESCO, Paris, France.Google Scholar
Woltering, M., Johnson, T., Werne, J., Schouten, S., Sinninghe Damste, J., (2011). Late Pleistocene temperature history of Southeast Africa: a TEX86 temperature record from Lake Malawi. Palaeogeography, Palaeoclimatology, Palaeoecology 303, 93102.Google Scholar
Wu, H., Guiot, J., Brewer, S., Guo, Z., (2007). Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modeling. Climate Dynamics 29, 211229.Google Scholar
Zhao, M., Eglinton, G., Haslett, S., Jordan, R., Sarnthein, M., Zhang, Z., (2000). Marine and terrestrial biomarker records for the last 35,000 years at ODP site 658C off NW Africa. Organic Geochemistry 31, 919930.Google Scholar