Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T21:17:33.547Z Has data issue: false hasContentIssue false

Evidence for Lake Formation as a Response to an Inferred Holocene Climatic Transition in Brazil

Published online by Cambridge University Press:  20 January 2017

Saulo Rodrigues-Filho
Affiliation:
Centro de Tecnologia Mineral CETEM/MCT, Cidade Universitária, 21941.590 Rio de Janeiro, Brazil, E-mail: srodrigues@cetem.gov.br
Hermann Behling
Affiliation:
Center for Tropical Marine Ecology, Fahrenheitstrasse 1, 28359 Bremen, Germany
George Irion
Affiliation:
Forschungsinstitut Senckenberg, Schleusenstrasse 37, 26382 Wilhemshaven, Germany
German Müller
Affiliation:
Institute for Environmental Geochemistry, University of Heidelberg, INF 236, 69120 Heidelberg, Germany

Abstract

Geochemical, mineralogical, and palynological records from a Holocene sediment core 12.7 m long from Lake Silvana, southeastern Brazil, served to identify the source of detrital sediments within catchment soils. The lake basin was first flooded in the early Holocene (9400 14C yr B.P.), when a gibbsite-rich B soil horizon started to accumulate. Four distinct hydrologic phases are consistent with vegetational changes indicated by pollen data. Phases of slope instability (colluviation) and low lake level correspond to pollen-free intervals and point to a severe retreat of the vegetation cover. The rapid sedimentation of slope-wash sediments alternating with alluvial sediments appears to have formed a tributary fan 7.8 m thick that dammed the Lake Silvana Basin 8500 14C yr B.P., probably as a response to a drastic increase in precipitation rates.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behling, H. Untersuchungen zur spätpleistozänen und holozänen Vegetations- und Klimageschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien). (1993). J. Cramer, Berlin-Stuttgart.Google Scholar
Behling, H. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: Vegetation, climate and fire history. Journal of Paleolimnology 14, (1995). 253268.Google Scholar
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., and Raynaud, D. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374, (1995). 4649.CrossRefGoogle Scholar
Engstrom, D.R., and Wright, H.E. Chemical stratigraphy of lake sediments as a record of environmental change. Haworth, E.Y., and Lund, J.W.G. Lake Sediments and Environmental History. (1984). Univ. of Minnesota Press, Minneapolis. 1167.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Wiley, Chichester.Google Scholar
Johnson, T.C., Scholz, C.A., Talbot, M.R., Kelts, K., Ricketts, R.D., Ngobi, G., Beuning, K., Ssemmanda, I., and Mcgill, J.W. Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273, (1996). 10911093.CrossRefGoogle Scholar
Ledru, M.P., Behling, H., Fournier, M., Martin, L., and Servant, M. Localisation de la forêt d'Araucaria du Brésil au cours de l'Holocène. Implications paléoclimatiques. Comptes Rendus de l'Academie des Sciences Paris 317, (1994). 517521.Google Scholar
Matschullat, J., Gaber, U., Raphael, S., and Kober, B. Rekonstruktion der Versauerungsgeschichte eines Sees—Sedimentologische, diatomologische und geochemische Untersuchungen an Sedimenten des Oderteiches im Harz. Neues Jahrbuch für Geologie und Paläontologie 208, (1998). 3954.CrossRefGoogle Scholar
Meis, M.R.M, and Monteiro, A.M.F. Upper quaternary “rampas”: Doce river valley, Southeastern Brazilian plateau. Zeitschrift für Geomorphologie 23, (1979). 132151.Google Scholar
Meis, M.R.M., and Moura, J.R.S. Upper Quaternary sedimentation and Hillslope evolution: Southeastern Brazilian plateau. American Journal of Science 284, (1984). 241254.Google Scholar
Moore, S.E., Ferrel, R.E. Jr., and Aharon, P. Diagenetic siderite and other ferroan carbonates in a modern subsiding marsh sequence. Journal of Sedimentary Petrology 62, (1992). 357366.Google Scholar
Müller, G., and Gastner, M. The “Carbonate-Bombe,” a simple device for the determination of carbonate contents in sediments, soils and other materials. Neus Jahrbuch für Mineralogie 10, (1971). 466469.Google Scholar
Nimer, E. Climatologia do Brasil. (1989). Instituto Brasileiro de Geografia e Estatı́stica, Rio de Janeiro.Google Scholar
Pflug, R. Das Überschüttungsrelief des Rio Doce, Brasilien. Zeitschrift für Geomorphologie 13, (1969). 141162.Google Scholar
Postma, D. Pyrite and siderite formation in brackish and freshwater swamp sediments. American Journal of Science 282, (1982). 11511185.Google Scholar
Rajan, S., Mackenzie, F.T., and Glenn, C.R. A thermodynamic model for water column precipitation of siderite in the Plio-Pleistocene Black Sea. American Journal of Science 296, (1996). 506548.CrossRefGoogle Scholar
Rodrigues-Filho, S., and Maddock, J.E.L. Mercury pollution in two gold mining areas of the Brazilian Amazon. Journal of Geochemical Exploration 58, (1997). 231240.CrossRefGoogle Scholar
Rosenbaum, J.G., Reynolds, R.L., Adam, D.P., Drexler, J., Sarna-Wojcicki, A.M., and Whitney, G.C. Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon—Evidence from sediment magnetism, trace-element geochemistry, and pollen. Geological Society of America Bulletin 108, (1996). 13281341.2.3.CO;2>CrossRefGoogle Scholar
Roubik, D.W., and Moreno, J.E. Pollen and Spores of Barro Colorado Island. (1991). Missouri Botanical Garden, St. Louis.Google Scholar
Salgado-Labouriau, M.L. Contribuicão à Palinologia dos cerrados. (1973). Academia Brasileira de Ciências, Rio de Janeiro.Google Scholar
Salgado-Labouriau, M.L., Casseti, V., Ferraz-Vicentini, K.R., Martin, L., Soubiès, F., Suguio, K., and Turcq, B. Late Quaternary vegetational changes in cerrado and palm swamp from Central Brazil. Palaeogeography, Paleoclimatology, Palaeoecology 128, (1997). 215226.Google Scholar
Stager, J.C., and Mayewski, P.A. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science 276, (1997). 18341836.CrossRefGoogle Scholar
Street-Perrott, F.A. Ancient tropical methane. Nature 366, (1993). 411413.CrossRefGoogle Scholar
Stuiver, M., and Polach, H.A. Reporting of 14C Data. Radiocarbon 19, (1977). 355363.CrossRefGoogle Scholar
Tundisi, J.G., Matsumura-Tundisi, T., Fukuara, H., Mitamura, O., Guillén, S.M., Henry, R., Rocha, O., Calijuri, M.C., Ibañez, M.S.R., Espindola, E.L.G., and Govoni, S. Limnology of fifteen lakes. Tundisi, J.G., and Saijo, Y. Limnological Studies on the Rio Doce Valley Lakes, Brazil. (1997). Brazilian Academy of Sciences/University of São Paulo, 409439.Google Scholar
Valero-Garcés, B.L., Laird, K.R., Fritz, S.C., Kelts, K., Ito, E., and Grimm, E.C. Holocene climate in the northern Great Plains inferred from sediment stratigraphy, stable isotopes, carbonate geochemistry, diatoms and pollen at Moon Lake, North Dakota. Quaternary Research 48, (1997). 359369.Google Scholar
Williamson, D., Jelinowska, A., Kissel, C., Tucholka, P., Gibert, E., Gasse, F., Massault, M., Taieb, M., Van Campo, E., and Wieckowski, K. Mineral-magnetic proxies of erosion/oxidation cycles in tropical maar-lake sediments (Lake Tritrivakely, Madagascar): Paleoenvironmental implications. Earth and Planetary Science Letters 155, (1998). 205219.Google Scholar
Xiouzhu, Z., Yunfei, W., and Huaiyan, L. Authigenic mineralogy, depositional environments and evolution of fault-bounded lakes of the Yunnan Plateau, south-western China. Sedimentology 43, (1996). 367380.Google Scholar
Yu, Z.C., and Eicher, U. Abrupt climate oscillations during the last deglaciation in Central North America. Science 282, (1998). 22352238.CrossRefGoogle ScholarPubMed