Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T11:33:22.078Z Has data issue: false hasContentIssue false

Evolution of the Asian summer monsoon during Dansgaard/Oeschger events 13–17 recorded in a stalagmite constrained by high-precision chronology from southwest China

Published online by Cambridge University Press:  06 June 2017

Ting-Yong Li*
Affiliation:
Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China Field Scientific Observation & Research Base of Karst Eco-environments at Nanchuan in Chongqing, Ministry of Land and Resources of China, Chongqing 408435, China
Li-Yin Han
Affiliation:
Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China Field Scientific Observation & Research Base of Karst Eco-environments at Nanchuan in Chongqing, Ministry of Land and Resources of China, Chongqing 408435, China
Hai Cheng
Affiliation:
Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China
R. Lawrence Edwards
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
Chuan-Chou Shen
Affiliation:
Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, China
Hong-Chun Li
Affiliation:
Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, China
Jun-Yun Li
Affiliation:
Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China
Chun-Xia Huang
Affiliation:
Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China
Tao-Tao Zhang
Affiliation:
Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China
Xin Zhao
Affiliation:
Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China
*
*Corresponding author at: School of Geographical Sciences, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China. E-mail: cdlty@swu.edu.cn (T.-Y. Li).

Abstract

A stalagmite with high 238U content from Yangkou Cave, China, revealed the evolution of the Asian summer monsoon (ASM) between 49.1 and 59.5 ka, and the δ18O values recorded Dansgaard/Oeschger (D/O) events 13–17. The Yangkou record shows a relatively gradual transition into the D/O 14 and 16 events. The discrepancy between the abrupt and gradual transitions of D/O 14 in the records from northern and southern China, respectively, suggests different responses of the ASM to climate changes in the high northern latitudes. The higher resolution δ18O record and more precise 230Th dating indicate that the timing of D/O 14 and 17 in the Hulu records at 53 and 58 ka should be shifted to 54.3 and 59 ka, respectively. The gradual strengthening of the ASM at the onsets of D/O 16 and 14 in our record is different from the abrupt temperature rise in the northern high latitudes. Some other factors must contribute to this relatively gradual ASM change in southern China, but the actual reason is still unknown.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agnihotri, R., Dutta, K., Bhushan, R., Somayajulu, B.L.K., 2002. Evidence for solar forcing on the Indian monsoon during the last millennium. Earth and Planetary Science Letters 198, 521527.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Sciences Review 10, 297317.CrossRefGoogle Scholar
Berger, A.L., 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences 35, 23622367.Google Scholar
Blunier, T., Brook, E.J., 2001. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109112.CrossRefGoogle ScholarPubMed
Bond, G., Broecker, W.S., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Letters to Nature 365, 143147.CrossRefGoogle Scholar
Cai, Y., An, Z., Cheng, H., Edwards, R.L., Kelly, M.J., Liu, W., Wang, X., Shen, C., 2006. High-resolution absolute-dated Indian monsoon record between 53 and 36 ka from Xiaobailong cave, southwestern China. Geology 34, 621624.Google Scholar
Castagnoli, G.C., Bonino, G., Provenzale, A., Serio, M., 1990. On the presence of regular periodicities in the thermoluminescence profile of a recent sea sediment core. Philosophical Transactions of the Royal Society, A: Mathematical, Physical and Engineering Sciences 330, 481486.Google Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., Wang, X., 2009. Ice age terminations. Science 326, 248252.Google Scholar
Cheng, H., Edwards, R.L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., 2013a. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multicollector inductively coupled plasma mass spectroscopy. Earth and Planetary Science Letters 371–372, 8291.Google Scholar
Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d’Horta, F., Ribas, C.C., Vuille, M., Stott, L.D., Auler, A.S., 2013b. Climate change patterns in Amazonia and biodiversity. Nature Communications 4, 1411. http://dx.doi.org/10.1038/ ncomms2415.CrossRefGoogle ScholarPubMed
Cheng, H., Sinha, A., Wang, X., Cruz, F.W., Edwards, R.L., 2012. The global paleomonsoon as seen through speleothem records from Asia to the Americas. Climate Dynamics 39, 10451062.Google Scholar
Cosford, J., Qing, H., Yuan, D., Zhang, M., Holmden, C., Patterson, W., Cheng, H., 2008. Millennial-scale variability in the Asian monsoon: evidence from oxygen isotope records from stalagmites in southeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 312.CrossRefGoogle Scholar
Dahl-Jensen, D., Johnsen, S., 1986. Palaeotemperatures still exist in the Greenland ice sheet. Nature 320, 250252.Google Scholar
Damon, P.E., Sonnett, C.P., 1991. Solar and terrestrial components of the atmospheric 14C variation spectrum. In Sonnett, C.P., Giampapa, M.S., Matthews, M.S. (Eds.), The Sun in Time. University of Arizona Press, Tucson, pp. 360388.Google Scholar
Dansgaard, W., 1954. The 18O-abundance in fresh water. Geochimica et Cosmochimica Acta 6, 241260.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., et al. 1993. Evidence for general instability of past climate from a 250-kyr ice core record. Nature 364, 218220.Google Scholar
Ding, Y., Li, C., Liu, Y., 2004. Overview of the South China Sea Monsoon Experiment. Advances in Atmospheric Sciences 21, 343360.Google Scholar
Duan, W., Cheng, H., Tan, M., Edwards, R.L., 2016. Onset and duration of transitions into Greenland Interstadials 15.2 and 14 in northern China constrained by an annually laminated stalagmite. Scientific Reports 6, 20844. http://dx.doi.org/10.1038/srep20844.Google Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D.X., Cai, Y.J., Zhang, M.L., Lin, Y.S., Qing, J.M., An, Z.S., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.Google Scholar
Edwards, R.L., 1988. High precision thorium-230 ages of corals and the timing of sea level fluctuation in the late Quaternary. Earth and Planetary Science Letters 90, 371381.CrossRefGoogle Scholar
Han, L.-Y., Li, T.-Y., Cheng, H., Edwards, R.L., Shen, C.-C., Li, H.-C., Huang, C.-X., et al. 2016. Potential influence of temperature changes in the Southern Hemisphere on the evolution of the Asian summer monsoon during the last glacial period. Quaternary International 392, 239250.CrossRefGoogle Scholar
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C4, 18891906.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., Steffensen, J.P., 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311313.CrossRefGoogle Scholar
Jouzel, J., Alley, R.B., Cuffey, K.M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, S.J., et al. 1997. Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research 102, 2647126487.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261285.Google Scholar
Leuschner, D.C., Sirocko, F., 2000. The low-latitude monsoon climate during Dansgaard/Oeschger cycles and Heinrich events. Quaternary Science Reviews 19, 243254.CrossRefGoogle Scholar
Li, T.-Y., Shen, C.-C., Huang, L.-J., Jiang, X.-Y., Yang, X.-L., Mii, H.-S., Lee, S.-Y., Lo, L., 2014. Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial-interglacial period. Climate of the Past 10, 12111219.Google Scholar
Li, T.-Y., Shen, C.-C., Li, H.-C., Li, J.-Y., Chang, H.-W., Song, S.-R., Yuan, D.-X., et al. 2011. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China. Geochimica et Cosmochimica Acta 75, 41404156.CrossRefGoogle Scholar
Li, T.-Y., Yuan, D.-X., Li, H.-C., Yang, Y., Wang, J.-L., Wang, X.-Y., Li, J.-Y., Qin, J.-M., Zhang, M.-L., Lin, Y.-S., 2007. High-resolution climate variability of southwest China during 57–70 ka reflected in a stalagmite δ18O record from Xinya Cave. Science in China, Series D: Earth Sciences 50, 12021208.Google Scholar
Liu, Z., Wen, X., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., et al. 2013. Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews 83, 115128.Google Scholar
Lutgens, F. K., Tarbuck, E.J., 2001. The Atmosphere (8th ed. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
North Greenland Ice Core Project members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.CrossRefGoogle Scholar
Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. EOS, Transactions of the American Geophysical Union 77, 379.Google Scholar
Porter, S.C., An, Z., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.Google Scholar
Railsback, L.B., Xiao, H., Liang, F., Akers, P.D., Brook, G.A., Dennis, W.M., Lanier, T.E., Tan, M., Cheng, H., Edwards, R.L., 2014. A stalagmite record of abrupt climate change and possible Westerlies-derived atmospheric precipitation during the Penultimate Glacial Maximum in northern China. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 3044.CrossRefGoogle Scholar
Schulz, M., Mudelsee, M., 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences 28, 421426.Google Scholar
Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R.L., Hsieh, Y.-T., Gallet, S., Chang, C.-C., et al. 2012. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta 99, 7186.Google Scholar
Stocker, T.F., Johnsen, S.J., 2003. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087. http://dx.doi.org/10.1029/2003PA000920.Google Scholar
Stuiver, M., Braziunas, T.F., 1989. Atmospheric 14C and century scale solar oscillations. Nature 338, 405408.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T.F., 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3, 289305.CrossRefGoogle Scholar
Sun, Y., Clemens, S.C., Morrill, C., Lin, X., Wang, X., An, Z., 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience 5, 4649.Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., et al. 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, 4757.Google Scholar
Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241265.Google Scholar
Thomas, E.R., Wolff, E.W., Mulvaney, R., Johnsen, S.J., Steffensen, J.P., Arrowsmith, C., 2009. Anatomy of a Dansgaard-Oeschger warming transition: high-resolution analysis of the North Greenland Ice Core Project ice core. Journal of Geophysical Research: Atmospheres 114, D08102. http://dx.doi.org/10.1029/2008 JD011215.Google Scholar
Voelker, A.H.L., workshop participants. 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21, 11851212.CrossRefGoogle Scholar
Wang, B., Lin, H., 2002. Rainy season of the Asian–Pacific summer monsoon. Journal of Climate 15, 386396.Google Scholar
Wang, H.-B., Li, T.-Y., Yuan, N., Li, J.-Y., 2014. Environmental signification and the characteristics of δD and δ18O variation in the local precipitation and drip water in Yangkou cave, Chongqing. [In Chinese, with English abstract.]. Carsologica Sinica 33, 146155.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., Dorale, J.A., 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.Google Scholar
Webster, P.J., Magaña, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., Yasunari, T., 1998. Monsoons: processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103, 1445114510.CrossRefGoogle Scholar
Zhang, R., Zhu, X., Han, D., Zhang, Y., Fang, F., 1998. Preliminary study on karst caves of Mt. Jinfo, Nanchuan, Chongqing. [In Chinese, with English abstract.]. Carsologica Sinica 17, 196211.Google Scholar
Zhao, K., Wang, Y., Edwards, R.L., Cheng, H., Liu, D., 2010. High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition. Earth and Planetary Science Letters 298, 191198.Google Scholar
Zhao, K., Wang, Y., Edwards, R.L., Cheng, H., Liu, D., Kong, X., Ning, Y., 2016. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 449, 510519.Google Scholar
Zhou, H., Zhao, J.-X., Feng, Y., Chen, Q., Mi, X., Shen, C.-C., He, H., et al. 2014. Heinrich event 4 and Dansgaard/Oeschger events 5–10 recorded by high-resolution speleothem oxygen isotope data from central China. Quaternary Research 82, 394404.Google Scholar