Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T08:16:58.822Z Has data issue: false hasContentIssue false

Exploring the use of zircon geochronology as an indicator of Laurentide Ice Sheet till provenance, Indiana, USA

Published online by Cambridge University Press:  20 September 2017

Christine M. Kassab*
Affiliation:
Department of Earth Sciences, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL118, Indianapolis, Indiana 46202, USA
Samantha L. Brickles
Affiliation:
Department of Earth Sciences, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL118, Indianapolis, Indiana 46202, USA
Kathy J. Licht
Affiliation:
Department of Earth Sciences, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL118, Indianapolis, Indiana 46202, USA
G. William Monaghan
Affiliation:
Indiana Geological Survey, 611 N. Walnut Grove, Bloomington, Indiana 47405, USA
*
*Corresponding author at: Department of Earth Sciences, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL118, Indianapolis, Indiana 46202, USA. E-mail address: ckassab@iupui.edu (C. Kassab).

Abstract

A pilot study was designed to evaluate the potential of zircon geochronology as a provenance indicator of till from the Lake Michigan, Saginaw, and Huron-Erie Lobes of the Laurentide Ice Sheet. Based on existing ice flow-path models, we hypothesized that till from each lobe would have different zircon age population distributions because the lobes originated from regions of the Canadian Shield with different bedrock ages. After correcting for zircon fertility, the majority of grains in all till samples are 1600–950 Ma, with ~30 % of ages >2500 Ma. This similarity means that till from the three lobes cannot be clearly differentiated based on their zircon populations. The dominant ages found and the homogeneity of distributions in the till indicates a non-Shield source and, instead, reflect an origin from some combination of underlying till and sedimentary bedrock in the Great Lakes region. Even though the datasets are small, the tills have similarities to zircon distributions in Michigan Basin rocks. This implies that a substantial fraction of zircon in till was not transported long distances from the Canadian Shield. Although zircon ages are not distinct between tills, the method provides a novel application to understand Laurentide Ice Sheet glacial erosion and transport.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, R.B., Cuffey, K.M., Evenson, E.B., Strasser, J.C., Lawson, D.E., Larson, G.J., 1997. How glaciers entrain and transport basal sediment: physical constraints. Quaternary Science Reviews 16, 10171038.Google Scholar
Anderson, R., 1957. Pebble and sand lithology of the major Wisconsin glacial lobes of the central lowland. Geological Society of America Bulletin 68, 14151460.Google Scholar
Bleuer, N., 1975. The Stone Creek Section: a historical key to the glacial stratigraphy of west-central Indiana. Indiana Geological Survey Occasional Paper 11. Department of Natural Resources, Bloomington, Indiana.Google Scholar
Boothroyd, J., 2012. Carboniferous provenance trends from clastic strata of the Michigan Basin. Master’s thesis, Michigan State University, East Lansing.Google Scholar
Boulton, G.S., 1996. Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation. Journal of Glaciology 42, 4362.Google Scholar
Clark, P.U., 1987. Subglacial sediment dispersal and till composition. The Journal of Geology 95, 527541.Google Scholar
Colgan, P.M., Mickelson, D.M., Cutler, P.M., 2003. Ice-marginal terrestrial landsystems: southern-Laurentide Ice Sheet margin. In: Evans, D.J.A. (Ed), Glacial Landsystems. Routledge, New York, pp. 111142.Google Scholar
Coram, M., 2011. Stratigraphy and provenance of Late Pleistocene glacial sediments in the Pontiac south quadrangle, southeastern Michigan. Master’s thesis, Wayne State University, Detroit.Google Scholar
Curry, B.B., Grimley, D.A., McKay, E.D., 2011. Quaternary glaciations in Illinois. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary glaciations – extent and chronology: a closer look. Developments in Quaternary Sciences Vol. 15. Elsevier, Amsterdam, pp. 467487.Google Scholar
Dickinson, W.R., 2008. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth and Planetary Science Letters 275, 8092.Google Scholar
Dickinson, W.R., Gehrels, G.E., Marzoil, J.E., 2010. Detrital zircons from fluvial Jurassic strata of the Michigan basin: implications for the transcontinental Jurassic paleoriver hypothesis. Geology 38, 499502.Google Scholar
Dworkin, S.I., Larson, G.J., Monaghan, G.W., 1985. Late Wisconsinan ice flow reconstruction for the central Great Lakes region. Canadian Journal of Earth Sciences 22, 935940.Google Scholar
Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.J., Shaw, J., Veillette, J.J., 2002. The Laurentide and Innuitian Ice Sheets during the Last Glacial Maximum. Quaternary Science Reviews 21, 931.Google Scholar
Esch, J., 2011. Michigan bedrock topography, glacial drift thickness and bedrock outcrop maps. Geological Society of America Abstracts with Programs 43, 56.Google Scholar
Farrand, W.R., Mickelson, D.M., Cowan, W.R., Goebel, J.E., Richmond, G.M., Fullerton, D.S., 1983. Quaternary geologic map of the Lake Superior 4ox6o quadrangle, United States and Canada. Quaternary Geologic Atlas of the United States Map I-1420 (NL-16). U.S. Geological Survey, Washington, DC.Google Scholar
Fraser, G.S., 1993. Sedimentology and history of Late Wisconsin alluviation of the Wabash Valley. Indiana Geological Survey Special Report 56. Indiana Geological Survey, Bloomington.Google Scholar
Fullerton, D.S., Cowan, W.R., Sevon, W.D., Goldthwait, R.P., Farrand, W.R., Muller, E.H., Behling, R.E., Stravers, J.A., Richmond, G.M., 1983. Quaternary geologic map of the Lake Erie 4°x6° quadrangle, United States. Quaternary Geologic Atlas of the United States Map I-1420 (NK-17). U.S. Geological Survey, Washington, DC.Google Scholar
Fullerton, D.S., Sevon, W.D., Muller, E.H., Judson, S., Black, R.F., Wagner, P.W., Hartshorn, J.H., Chapman, W.F., Cowan, W.D., 1992. Quaternary geologic map of the Hudson River 4°x6° quadrangle, United States. Quaternary Geologic Atlas of the United States Map I-1420 (NK-18). U.S. Geological Survey, Washington, DC.Google Scholar
Gadd, N.R., Veillette, J.J., Fullerton, D.S., Wagner, P.W., Chapman, W.R., 1993. Quaternary geologic map of the Ottawa 4ox6o quadrangle, United States. Quaternary Geologic Atlas of the United States Map I-1420 (NL-18). U.S. Geological Survey, Washington, DC.Google Scholar
Garrity, C.P., Soller, D.R., 2009. Database of the geologic map of North America. U.S. Geological Survey Data Series, 424 (accessed February 1, 2016). https://pubs.usgs.gov/ds/424/.Google Scholar
Gaschnig, R.M., Vervoort, J.D., Lewis, R.S., Tikoff, B., 2013. Probing for Proterozoic and Archean crust in the northern U.S. Cordillera with inherited zircon from the Idaho batholith. GSA Bulletin 125, 7388.CrossRefGoogle Scholar
Gehrels, G.E., 2000. Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California. In: Soreghan, M.J., Gehrels, G.E. (Eds.), Paleozoic And Triassic Paleogeography and Tectonics of Western Nevada and Northern California. Geological Society of America. Special Papers 347, 117.Google Scholar
Glover, K.C., Lowell, T.V., Wiles, G.C., Pair, D., Applegate, P., Hajdas, I., 2011. Deglaciation, basin formation and post-glacial climate change from a regional network of sediment core sites in Ohio and eastern Indiana. Quaternary Research 76, 401410.Google Scholar
Gooding, A.M., 1973. Characteristics of late Wisconsinan tills in eastern Indiana. Indiana Geological Survey Bulletin 49. Indiana Geological Survey, Bloomington.Google Scholar
Gooding, A.M., 1975. The Sidney interstadial and the Late Wisconsin history in Indiana and Ohio. American Journal of Science 275, 9931011.Google Scholar
Gray, H.H., Bleuer, N.K., Lineback, J.A., Swadley, W.C., Richmond, G.M., Miller, R.A., Goldthwait, R.P., Ward, R.A., 1991. Quaternary geologic map of the Louisville 4ox6o quadrangle, United States. Quaternary Geologic Atlas of the United States Map I-1420 (NJ-16). U.S. Geological Survey, Washington, DC.Google Scholar
Guynn, J., Gehrels, G., 2010. Comparison of detrital zircon age distributions using the K-S test. University of Arizona Laserchron Center, Tucson.Google Scholar
Gwyn, G.H.J., Dreimanis, A., 1979. Heavy mineral assemblages in tills and their use in distinguishing glacial lobes in the Great Lakes region. Canadian Journal of Earth Sciences 16, 22192235.Google Scholar
Hall, R.D., Anderson, A.K., 2000. Comparative soil development of Quaternary paleosols of the central United States. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 109145.Google Scholar
Hall, R.D., Anderson, A.K., 2001. Quaternary record at Cagles Mill, Putnam County, Indiana. Proceedings of the Indiana Academy of Science 110, 922.Google Scholar
Harrison, W., 1960. Original bedrock composition of Wisconsin till in central Indiana. Journal of Sedimentary Petrology 30, 432446.CrossRefGoogle Scholar
Hooke, R.L., Cummings, D.I., Lesemann, J.E., Sharpe, D.R., 2013. Genesis of dispersal plumes in till. Canadian Journal of Earth Sciences 50, 432446.Google Scholar
Karls, D.A., 2005. Petrographic and geochemical analysis of detrital magnetite in late Wisconsinan tills in eastern Indiana and western Ohio. Master’s thesis, Ball State University, Muncie.Google Scholar
Larson, P.C., Mooers, H.D., 2004. Glacial indicator dispersal processes: a conceptual model. Boreas 33, 238249.Google Scholar
Larson, P., Mooers, H., 2005. Generation of a heavy-mineral glacial indicator dispersal train from a diabase sill, Nipigon region, northwestern Ontario. Canadian Journal of Earth Sciences 42, 16011613.Google Scholar
Leverett, F., Taylor, F.B., 1915. The Pleistocene of Indiana and Michigan and the history of the Great Lakes. Monographs of the U.S. Geological Survey 53. U.S. Geological Survey, Washington, DC.Google Scholar
Licht, K.J., Hemming, S.R., 2017. Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications. Quaternary Science Reviews 164, 124.Google Scholar
Licht, K., Palmer, E.F., 2013. Erosion and transport by Byrd Glacier, Antarctica during the Last Glacial Maximum. Quaternary Science Reviews 62, 3248.Google Scholar
Licht, K., Hennessy, A.J., Welke, B.M., 2014. The U-Pb detrital zircon signature of West Antarctic ice stream tills in the Ross embayment, with implications for Last Glacial Maximum ice flow reconstructions. Antarctic Science 26, 687697.Google Scholar
Lineback, J.A., Bleuer, N.K., Mickelson, D.M., Farrand, W.R., Goldthwait, R.P., 1983. Quaternary geologic map of the Chicago 4°x6° quadrangle, United States. Quaternary Geologic Atlas of the United States Map I-1420 (NK-16). U.S. Geological Survey, Washington, DC.Google Scholar
Malott, C.A., 1922. The physiography of Indiana. In: Logan, W.N., Cumings, E.R., Malott, C.A., Visher, S.S., Tucker, W.M., Reeves, J.R. Handbook of Indiana Geology. Indiana Department of Conservation, Publication 21, Indianapolis, Indiana, pp. 59256.Google Scholar
Margold, M., Stokes, C.R., Clark, C.D., 2015a. Ice streams in the Laurentide Ice Sheet: identification, characteristics, and comparison to modern ice sheets. Earth Science Reviews 143, 117146.Google Scholar
Margold, M., Stokes, C.R., Clark, C.D., Kleman, J., 2015b. Ice streams in the Laurentide Ice Sheet: a new mapping inventory. Journal of Maps 11, 380395.Google Scholar
Mickelson, D.M., Colgan, P.M., 2003. The southern Laurentide Ice Sheet. In: Gillespie, A.R., Porter, S.C., Atwater, B.F. (Eds), The Quaternary Period in the United States. Elsevier. New York, pp. 117.Google Scholar
Mickelson, D.M., Clayton, L., Fullerton, D.S., Borns, H.W. Jr., 1983. The Late Wisconsin glacial record of the Laurentide Ice Sheet in the United States. In: Wright H.E., Jr., Porter, S.C. (Eds.), Late Quaternary Environments of the United States I: The Late Pleistocene. University of Minnesota Press, Minneapolis, pp. 330.Google Scholar
Moecher, D.P., Samson, S.D., 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications of sedimentary provenance analysis. Earth and Planetary Science Letters 247, 252266.Google Scholar
Palmer, E.F., Licht, K., Swope, R.J., Hemming, S.R., 2012. Nunatak moraines as a repository of what lies beneath the East Antarctic ice sheet. Geological Society of America Special Paper 487, 97104.Google Scholar
Potter, P.E., Pryor, W.A., 1961. Dispersal centers of Paleozoic and later clastics of the upper Mississippi Valley and adjacent areas. Geological Society of America Bulletin 72, 11951250.Google Scholar
Potter, P.E., Siever, R., 1956. Sources of basal Pennsylvanian sediments in the eastern interior basin 1: cross bedding. The Journal of Geology 64, 225244.Google Scholar
Prest, V.K., Donaldson, J.A., Mooers, H.D., 2000. The omar story: the role of omars in assessing glacial history of west-central North America. Géographie physique et Quaternaire 54, 257270.Google Scholar
Richmond, G.M., Fullerton, D.S., Christiansen, A.C., Howard, A.D., Behling, R.E., Wheeler, W.H., Daniels, R.B., et al. 1991. Quaternary geologic map of the Blue Ridge 4°x6° quadrangle, United States. Quaternary Geologic Atlas of the United States Map I-1420 (NJ-17). U.S. Geological Survey, Washington, DC.Google Scholar
Sado, E.V., Fullerton, D.S., Baker, C.L., Farrand, W.R., 1993. Quaternary geologic map of the Sudbury 4°x6° quadrangle, United States. Quaternary Geologic Atlas of the United States Map I-1420 (NL-17). U.S. Geological Survey, Washington, DC.Google Scholar
Sado, E.V., Fullerton, D.S., Farrand, W.R., 1994. Quaternary geologic map of the Lake Nipigon 4°x6° quadrangle, United States. Quaternary Geologic Atlas of the United States Map I-1420 (NM-16). U.S. Geological Survey, Washington, DC.Google Scholar
Satkoski, A.M., Wilkinson, B.H., Hietpas, J., Samson, S.D., 2013. Likeness among detrital zircon populations – an approach to the comparison of age frequency data in time and space. GSA Bulletin 125, 17831799.Google Scholar
Siever, R., Potter, P.E., 1956. Sources of basal Pennsylvanian sediments in the eastern interior basin, 2. Sedimentary petrology. The Journal of Geology 64, 317335.Google Scholar
Shaw, J., Sharpe, D.R., Harris, J., Lemkow, D., Pehleman, D., 2010. Digital landform patterns for glaciated regions of Canada – a predictive model of flowlines based on topographic and LANDSAT 7 data. Geological Survey of Canada. Edmonton, Alberta, Canada, Open File Report 6190.Google Scholar
Shideler, G.L., 1969. Dispersal patterns of Pennsylvania sandstones in the Michigan Basin. Journal of Sedimentary Petrology 39, 12291237.Google Scholar
Shilts, W., 1993. Geological Survey of Canada’s contributions to understanding the composition of glacial sediments. Canadian Journal of Earth Sciences 30, 333353.Google Scholar
Syverson, K.M., Colgan, P.M., 2011. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary glaciations – extent and chronology: a closer look. Developments in Quaternary Sciences Vol. 15. Elsevier, Amsterdam, pp. 537552.Google Scholar
Taylor, K.S., Faure, G., 1981. Rb-Sr dating of detrital feldspar: a new method to study till. The Journal of Geology 89, 97107.Google Scholar
Wayne, W.J., 1956. Thickness of drift and bedrock physiography of Indiana north of the Wisconsin glacial boundary. Indiana Geological Survey Report of Progress 7. Indiana Geological Survey, Bloomington.Google Scholar
Wayne, W.J., 1965. The Crawfordsville and Knightstown moraines in Indiana. Indiana Geological Survey Report of Progress 28. Indiana Geological Survey, Bloomington.Google Scholar
Wayne, W.J., 1967. The Erie Lobe margin in east central Indiana during the Wisconsin glaciation. Proceedings of the Indiana Academy of Science 77, 279291.Google Scholar
Wayne, W.J., Thornbury, W.D., 1951. Glacial geology of Wabash County, Indiana. Indiana Geological Survey Bulletin 5. Indiana Geological Survey, Bloomington.Google Scholar
Whitmeyer, S.J., Karlstrom, K.E., 2007. Tectonic model for the Proterozoic growth of North America. Geosphere 3, 220259.Google Scholar
Supplementary material: File

Kassab et al supplementary material

Table S5

Download Kassab et al supplementary material(File)
File 14.7 KB
Supplementary material: File

Kassab et al supplementary material

Table S6

Download Kassab et al supplementary material(File)
File 13.8 KB
Supplementary material: File

Kassab et al supplementary material

Table S4

Download Kassab et al supplementary material(File)
File 78.2 KB