Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T08:01:59.723Z Has data issue: false hasContentIssue false

Forest history, peatland development and mid- to late Holocene environmental change in the southern taiga forest of central European Russia

Published online by Cambridge University Press:  02 November 2017

Elena Yu. Novenko*
Affiliation:
Faculty of Geography, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia Institute of Geography Russian Academy of Science, Staromonetny Lane, 29, 119017, Moscow, Russia
Andrey N. Tsyganov
Affiliation:
Department of Zoology and Ecology, Penza State University, Krasnaya Str. 40, 440026, Penza, Russia
Natalia M. Pisarchuk
Affiliation:
Faculty of Geography, Belarusian State University, Avenue Nezavisimosty, 4, 220030, Minsk, Belarus
Elena M. Volkova
Affiliation:
Department of Biology, Tula State University, Lenin Avenue, 92, 300600, Tula, Russia
Kirill V. Babeshko
Affiliation:
Department of Zoology and Ecology, Penza State University, Krasnaya Str. 40, 440026, Penza, Russia
Daniil N. Kozlov
Affiliation:
Faculty of Geography, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia V.V. Dokuchaev Soil Science Institute, Pyzhyovskiy Lane 7/2, 19017, Moscow, Russia
Pavel M. Shilov
Affiliation:
Faculty of Geography, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
Richard J. Payne
Affiliation:
Department of Zoology and Ecology, Penza State University, Krasnaya Str. 40, 440026, Penza, Russia Environment, University of York, York YO105DD, United Kingdom
Yuri A. Mazei
Affiliation:
Faculty of Geography, Belarusian State University, Avenue Nezavisimosty, 4, 220030, Minsk, Belarus Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, 119991, Moscow, Russia
Alexander V. Olchev
Affiliation:
Faculty of Geography, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Leninskiy Avenue, 33, 119071, Moscow, Russia
*
*Corresponding author at: Faculty of Geography, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia. E-mail address: lenanov@mail.ru (E.Yu. Novenko).

Abstract

Understanding the long-term ecological dynamics of boreal forests is essential for assessment of the possible responses and feedbacks of forest ecosystems to climate change. New data on past forest dynamics and peatland development were obtained from a peat sequence in the southern Valdai Hills (European Russia) based on pollen, plant macrofossil, micro-charcoal, peat humification, and testate amoeba analyses. The results demonstrate a dominance of broadleaved forests in the study area from 7000–4000 cal yr BP. Picea was initially a minor component of this forest but increased in cover rapidly with climatic cooling beginning at 4000 cal yr BP, becoming the dominant species. Broadleaved species persisted until 900 cal yr BP, with evidence for intensified felling and forest management over recent centuries. Over the last four hundred years there is evidence for widespread paludification and the establishment of Picea-Sphagnum forests. These data demonstrate how modern wet woodlands have been shaped by a combination of climatic and anthropogenic factors over several millennia. The results also demonstrate the value of a multiproxy approach in understanding long-term forest ecology.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arslanov, Kh.A., Saveljeva, L.A., Gey, N.A., Klimanov, V.A., Chernov, S.B., Chernova, G.M., Kusmin, G.F., Tertychnaya, T.V., Subetto, D.A., Denisenkov, V.P., 1999. Chronology of vegetation and paleoclimate stages of Northwestern Russia during the late Glacial and Holocene. Radiocarbon 41, 2545.CrossRefGoogle Scholar
Behre, K.-E., 1981. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23, 225245.Google Scholar
Berger, A., 1978. Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quaternary Research 9, 138167.CrossRefGoogle Scholar
Beug, H.-J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil, Munich.Google Scholar
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.Google Scholar
Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 14441449.Google Scholar
Bonan, G.B., Pollard, D., Thompson, S.L., 1992. Effects of boreal forest vegetation on global climate. Nature 359, 716718.Google Scholar
Budyko, M.I., 1974. Climate and Life. Academic Press, Orlando.Google Scholar
Caseldine, C., Hatton, J., 1993. The development of high moorland on Dartmoor: fire and the influence of Mesolithic activity on vegetation change. In Chambers, F.M. (Ed.), Climate Change and Human Impact on the Landscape. Chapman and Hall, London, pp. 119131.Google Scholar
Chambers, F.M., Beilman, D.W., Yu, Z., 2010/2011. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland. Mires and Peat 7, 110.Google Scholar
Chepurnaya, A.A., Novenko, E.Yu., 2015. Pollen database from territory of Russia and adjacent countries as a tool for paleoecological research. Russian Academy of Sciences, Izvestiya, Seria Geografiya 1, 119128.Google Scholar
Clark, R.L., 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen et Spores 24, 523535.Google Scholar
Clear, J.L., Seppä, H., Kuosmanen, N., Bradshaw, R.H.W., 2015. Holocene stand-scale vegetation dynamics and fire history of an old growth spruce forest in southern Finland. Vegetation History and Archaebotany 24, 731741.Google Scholar
Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., Data Contributors. 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, 17011716.CrossRefGoogle Scholar
Davis, B.A.S, Zanon, M., Collins, P., Mauri, A., Bakker, J., Barboni, D., Barthelmes, A., et al., 2013. The European modern pollen database (EMPD) project. Vegetation History and Archaeobotany 22, 521530.CrossRefGoogle Scholar
Dean, W. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sediment Research 44, 242248.Google Scholar
Desherevskaya, O., Kurbatova, J., Olchev, A., 2010. Climatic conditions of the south part of Valday Hills, Russia, and their projected changes during the 21st century. Open Geography Journal 3, 7379.Google Scholar
Dombrovskaya, A.V., Koreneva, M.M., Turemnov, S.N., 1959. Atlas of Plant Remains in Peat [In Russian.] Nauka, Moscow-Leningrad.Google Scholar
Ershov, D.V., 2007. Methods of assessment of area covered by forests using satellite imaging MODIS of moderate spatial resolution. [In Russian.], Modern Problems of Remote Sensing of the Earth from Space 2, 217225.Google Scholar
Finsinger, W., Tinner, W., Hu, F.S., 2008. Rapid and accurate estimates of microcharcoal content in pollen slides. In Fiorentino, G., Magri, D. (Eds.), Charcoals from the Past: Cultural and Palaeoenvironmental Implications (BAR International Series Vol. 1807. Archaeopress, Oxford, pp. 121124.Google Scholar
Foley, J.A., Kutzbach, J.E., Coe, M.T., Levis, S., 1994. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371, 5254.Google Scholar
Giesecke, T., 2005. Moving front or population expansion: how did Picea abies (L.) Karst. become frequent in central Sweden? Quaternary Science Reviews 24, 24952509.Google Scholar
Giesecke, T., Bennett, K.D., 2004. The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. Journal of Biogeography 31, 15231548.CrossRefGoogle Scholar
Glushkov, I.V., Sirin, A.A., Minayeva, T.Y., 2016. Influences of hydrological conditions on development of the watershed forest peatlands and boggy forests in the Central Forest Reserve. [In Russian.], Lesovedenie 6, 403417.Google Scholar
Grace, J., Meir, P., Malhi, Y., 2001. Keeping track of carbon flows between biosphere and atmosphere. In Press, M.C., Huntly, N., Levin, S. (Eds.), Ecology: Achievement and Challenge: 41st Symposium of the British Ecological Society. Blackwell Science, Blackwell. Boston, pp. 249269.Google Scholar
Grimm, E.C.A, 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.Google Scholar
Grimm, E.C.A., 1990. TILIA and TILIA*GRAPH.PC spreadsheet and graphics software for pollen data. INQUA Working Group on Data-Handling Methods Newsletter 4, 57.Google Scholar
Gromtsev, A., 2002. Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fennica 36, 4155.CrossRefGoogle Scholar
Hansen, M., Townshend, J., DeFries, R., Carroll, M., 2005. Estimation of tree cover using MODIS data at global, continental and regional/local scales. International Journal of Remote Sensing 26, 43594380.Google Scholar
Heikkilä, M., Seppä, H., 2010. Holocene climate dynamics in Latvia, eastern Baltic region: a pollen-based summer temperature reconstruction and regional comparison. Boreas 39, 705719.Google Scholar
Hendon, D., Charman, D.J., 1997. The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. The Holocene 7, 199205.Google Scholar
Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 20592072.Google Scholar
Hytteborn, H., Maslov, A.A., Nazimova, D.I., Rysin, L.P., 2005. Boreal forests of Eurasia. In Andersson, F. (Ed.), Ecosystems of the World 6: Coniferous Forests. Elsevier, Amsterdam, pp. 2398.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge.Google Scholar
Kalis, A.J., Merkt, J., Wunderlich, J., 2003. Environmental changes during the Holocene climatic optimum in central Europe - human impact and natural causes. Quaternary Science Reviews 22, 3379.Google Scholar
Kalnina, L., Stivrins, N., Kuske, E., Ozola, I., Pujate, A., Zeimule, S., Grudzinska, I., Ratniece, V., 2015. Peat stratigraphy and changes in peat formation during the Holocene in Latvia. Quaternary International 383, 186195.CrossRefGoogle Scholar
Kaplan, J.O., Kristen M. Krumhardt, K.M., Zimmermann, M., 2009. The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews 28, 30163034.Google Scholar
Kasin, I., Blanck, Y., Storaunet, K.O., Rolstad, J., Ohlson, M., 2013. The charcoal record in peat and mineral soil across a boreal landscape and possible linkages to climate change and recent fire history. The Holocene 23, 10521065.Google Scholar
Katz, N.Y., Katz, S.V., Skobeva, E.I., 1977. Atlas of Plant Remains in Peat [In Russian.] Nedra-press, Moscow.Google Scholar
Khotinski, N.A., Klimanov, V.A., 1997. Alleröd, Younger Dryas and early Holocene palaeo-environmental stratigraphy. Quaternary International 41/42, 6770.Google Scholar
Kilpeläinen, A., Kellomäki, S., Strandman, H., Venäläinenen, A., 2010. Climate change impacts on forest fire potential in boreal conditions in Finland. Climatic Change 103, 383–198.Google Scholar
Krementski, K.V., Borisova, O.K., Zelikson, E.M., 2000. The Late Glacial and Holocene history of vegetation in the Moscow region. Paleontological Journal 34, 6774.Google Scholar
Kunes, P., Svobodova-Svitavska, H., Kolar, J., Hajnalova, M., Abraham, V., Macek, M., Tkac, P., Szabo, P., 2015. The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quaternary Science Reviews 116, 1527.Google Scholar
Kuosmanen, N., Seppä, H., Reitalu, T., Alenius, T., Bradshaw, R.W.H., Clear, J.L., Filimonova, L, Kuznetsov, O., 2016. Long-term forest composition and its drivers in taiga forest in NW Russia. Vegetation History and Archaeobotany 25, 221236.Google Scholar
Lishtvan, I.I., Korol, N.T., 1975. The Main Properties of Peat and Methods of its Determination [In Russian.] Nauka i Technika, Minsk.Google Scholar
Lisitsyna, O.V., Giesecke, T., Hicks, S., 2011. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Review of Palaeobotany and Palynology 166, 311324.Google Scholar
Luyssaert, S.E., Schulze, D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P., Grace, J., 2008. Old-growth forests as global carbon sinks. Nature 455, 213215.CrossRefGoogle ScholarPubMed
Malhi, Y., Baldocchi, D.D., Jarvis, P.G., 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell and Environment 22, 715740.Google Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. GLOBAL signatures and dynamical origins of the Little Ice Age and Medieval climate anomaly. Science 326, 12561260.Google Scholar
Marquer, L., Gaillard, M.-J., Sugita, S., Trondman, A.-K., Mazier, F., Nielsen, A.B., Fyfe, R.M., et al., 2014. Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter. Quaternary Science Reviews 90, 199216.Google Scholar
Mauquoy, D., Engelkes, T., Groot, M.H.M., Markesteijn, F., Oudejans, M.G., van der Plicht, J., van Geel, B., 2002. High-resolution records of late Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 275310.Google Scholar
Mauquoy, D., Yeloff, D., 2008. Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change? Biodiversity and Conservation 17, 21392151.Google Scholar
Mauri, A., Davis, B.A.S., Collins, P.M., Kaplan, J.O., 2015. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews 112, 109127.Google Scholar
Mazei, Yu, Chernyshov, V., Tsyganov, A.N., Payne, R.J., 2015. Testing the effect of refrigerated storage on testate amoeba samples. Microbial Ecology 70, 861864.Google Scholar
Minayeva, T.Yu., Trofimov, S.Ya., Dorofeyeva, E.I., Chichagova, O.A., Sirin, A.A., Glushkov, I.V., Mikhailov, N.D., Kromer, B., 2008. Carbon accumulation in soils of forest and bog ecosystems of southern Valdai in the Holocene. Biology Bulletin 35, 524532.Google Scholar
Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, U., Zhang, L., Anderson, C.J, Jørgensen, S.E., Brix, H., 2013. Wetlands, carbon, and climate change. Landscape Ecology 28, 583597.Google Scholar
Moore, P.D., 1993. The origin of blanket mire, revisited. In Chambers, F.M. (Ed.), Climate Change and Human Impact on the Landscape. Chapman and Hall, London, pp. 217224.Google Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis. Blackwell, Oxford.Google Scholar
Nakagawa, T., Tarasov, P., Kotoba, N., Gotanda, K., Yasuda, Y., 2002. Quantitative pollen-based climate reconstruction in Japan: application to surface and late Quaternary spectra. Quaternary Science Reviews 21, 20992113.Google Scholar
Niinemets, E., Saarse, L., 2009. Holocene vegetation and land-use dynamics of south-eastern Estonia. Quaternary International 207, 104116.Google Scholar
Nosova, M.B., Severova, E.E., Volkova, O.A., Kosenko, J.V., 2015. Representation of Picea pollen in modern and surface samples from Central European Russia. Vegetation History and Archaeobotany 24, 319330.Google Scholar
Novenko, E., Olchev, A., Desherevskaya, O., Zuganova, I., 2009a Paleoclimatic reconstructions for the south of Valdai Hills (European Russia) as paleo-analogs of possible regional vegetation changes under global warming. Environmental Research Letters 4, 045016. http://dx.doi.org/10.1088/1748-9326/4/4/045016.Google Scholar
Novenko, E.Y., Tsyganov, A.N., Volkova, E.M., Babeshko, K.V., Lavrentiev, N.V., Payne, R.J., Mazei, Y.A., 2015. The Holocene palaeoenvironmental history of Central European Russia reconstructed from pollen, plant macrofossil and testate amoeba analyses of the Klukva peatland, Tula region. Quaternary Research 2015, 459468.Google Scholar
Novenko, E.Y., Tsyganov, A.N., Volkova, E.M., Kupriyanov, D.A., Mironenko, I.V., Babeshko, K.V., Utkina, A.S., Popov, V., Mazei, Y.A., 2016. Mid- and Late Holocene vegetation dynamics and fire history in the boreal forest of European Russia: a case study from Meshchera Lowlands. Palaeogeography, Palaeoclimatology, Palaeoecology 459, 570584.Google Scholar
Novenko, E.Y., Eremeeva, A.P., Chepurnaya, A.A., 2014. Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Vegetation History and Archaeobotany 23, 109119.CrossRefGoogle Scholar
Novenko, E.Yu., Mazei, N.G., Zernitskaya, V.P., 2017. Recent pollen assemblages from protected areas of European Russia as a key to interpreting the results of paleoecological studies. Nature Conservation Research 2, 5565.Google Scholar
Novenko, E.Yu., Volkova, E.M., Nosova, M.B., Zuganova, I.S., 2009b Late Glacial and Holocene landscape dynamics in the southern taiga zone of East European Plain according to pollen and macrofossil records from the Central Forest State Reserve (Valdai Hills, Russia). Quaternary International 207, 93103.Google Scholar
Olchev, A., Novenko, E., 2011. Estimation of potential and actual evapotranspiration of boreal forest ecosystems in the European part of Russia during the Holocene. Environmental Research Letters 6, 045213.Google Scholar
Olchev, A.V., Deshcherevskaya, O.A., Kurbatova, Yu.A., Molchanov, A.G., Novenko, E.Yu., Pridacha, V.B., Sazonova, T.A., 2013. CO2 and H2O exchange in the forest ecosystems of Southern Taiga under climate changes. Doklady Biological Sciences 450, 173176.Google Scholar
Oltchev, A., Cermak, J., Gurtz, J., Kiely, G., Nadezhdina, N., Tishenko, A., Zappa, M., et al., 2002a The response of the water fluxes of the boreal forest region at the Volga’s source area to climatic and land-use changes. Physics and Chemistry of the Earth 27, 675690.Google Scholar
Oltchev, A., Cermak, J., Nadezhdina, N., Tatarinov, F., Tishenko, A., Ibrom, A., Gravenhorst, G., 2002b Transpiration of a mixed forest stand: field measurements and simulation using SVAT models. Journal of Boreal Environmental Research 7, 389397.Google Scholar
Overpeck, J.T., Webb, T. III., Prentic, I.C.A., 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23, 87108.Google Scholar
Payne, R.J., Malysheva, E., Tsyganov, A.N., Pampura, T., Novenko, E., Volkova, E., Babeshko, K., Mazei, Yu., 2016. A multi-proxy record of Holocene environmental change, peatland development and carbon accumulation from Staroselsky Moch peatland, Russia. The Holocene 26, 314326.Google Scholar
Pitkänen, A., Tolonen, K., Jungner, H., 2001. A basin-based approach to the long-term history of forest fires as determined from peat strata. The Holocene 11, 599605.Google Scholar
Pluchon, N., Hugelius, G., Kuusinen, N., Kuhry, P., 2014. Recent paludification rates and effects on total ecosystem carbon storage in two boreal peatlands of Northeast European Russia. The Holocene 24, 11261136.CrossRefGoogle Scholar
R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/.Google Scholar
Ralska-Jasiewiczowa, M., Nalepka, D., Goslar, T., 2003. Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Vegetation History and Archaeobotany 12, 233247.Google Scholar
Reille, M., 1992. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP. Radiocarbon 55, 18691887.Google Scholar
Ruckstuhl, K.E., Johnson, E.A., Miyanishi, K., 2008. Introduction: the boreal forest and global change. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 22452249.Google Scholar
Saarse, L., Poska, A., Kaup, E., Heinsalu, A., 1998. Holocene environmental events in the Viitna area, north Estonia. Proceedings of the Estonian Academy of Sciences, Geology 47, 3144.Google Scholar
Seppä, H., Birks, H.J.B., 2001. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11, 527539.Google Scholar
Seppä, H., Poska, A., 2004. Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quaternary Research 61, 2231.Google Scholar
Shugart, H.H., Woodward, F.I., 2011. Global Change and the Terrestrial Biosphere: Achievements and Challenges. Wiley-Blackwell Press, Oxford.Google Scholar
Simpson, G.L., 2007. Analogue Methods in Palaeoecology: Using the analogue package. Journal of Statistical Software 22, 129.Google Scholar
Soja, A.J., Tchebakova, N.M., French, N.H.F., Flannigan, M.D., Shugart, H.H., Stocks, B.J., Sukhinin, A., Parfenova, E., Chapin, F.S. III., Stackhouse, P.W., 2007. Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change 56, 274296.Google Scholar
Stančikaite, M., Baltrŭnas, V, Šinkŭnas, P., Kisielienė, D., Ostrauskas, T., 2006. Human response to the Holocene environmental changes in the Biržulis Lake region, NW Lithuania. Quaternary International 150, 113129.Google Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 1, 615621.Google Scholar
Tuittila, E.-S., Juutinen, S., Frolking, S., Väliranta, M., Laine, A.M, Miettinen, A., Seväkivi, M.-L., Quillet, A., Merilä, P., 2014. Wetland chronosequence as a model of peatland development: Vegetation succession, peat and carbon accumulation. The Holocene 23, 2535.Google Scholar
van der Linden, M., Heijmans, M.P.D., van Geel, B., 2014. Carbon accumulation in peat deposits from northern Sweden to northern Germany during the last millennium. The Holocene 24, 11171125.Google Scholar
Velichko, A.A., Kremenetski, K.V., Negendank, J., Mingram, J., Borisova, O.K., Gribchenko, Yu.N., Zelikson, E.M., et al., 2001. Late Quaternary paleogeography of the north-east of Europe based (on the complex study of the Galich lake sediments). [In Russian.], Russian Academy of Sciences, Izvestiya, Seria Geografiya 3, 4254.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., et al., 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 17911828.CrossRefGoogle Scholar
Wright, H.E., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrot, E.A., Bartlein, P.J. (Eds.), 1993. Global Climates Since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, Minnesota.Google Scholar
Zernitskaya, V., Mikhailov, N., 2009. Evidence of early farming in the Holocene pollen spectra of Belarus. Quaternary International 203, 91104.Google Scholar
Zernitskaya, V., Stančikaitė, M., Vlasov, B., Šeirienė, V., Kisielienė, D., Gryguc, G., Skipitytė, R., 2015. Vegetation pattern and sedimentation changes in the context of the Lateglacial climatic events: case study of Staroje Lake (Eastern Belarus). Quaternary International 386, 7082.Google Scholar